Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, Lisbon, Portugal.
Associated Laboratory Terra, Lisbon, Portugal.
PLoS One. 2022 Sep 9;17(9):e0274286. doi: 10.1371/journal.pone.0274286. eCollection 2022.
Commuting flows and long-distance travel are important spreading factors of viruses and particularly airborne ones. Therefore, it is relevant to examine the association among diverse mobility scenarios and the spatial dissemination of SARS-CoV-2 cases. We intended to analyze the patterns of virus spreading linked to different mobility scenarios, in order to better comprehend the effect of the lockdown measures, and how such measures can be better informed. We simulated the effects of mobility restrictions in the spread of SARS-CoV-2 amongst the municipalities of two metropolitan areas, Lisbon (LMA) and Porto (PMA). Based on an adapted SEIR (Suscetible-Exposed-Infected-Removed) model, we estimated the number of new daily infections during one year, according to different mobility scenarios: restricted to essential activities, industrial activities, public transport use, and a scenario with unrestricted mobility including all transport modes. The trends of new daily infections were further explored using time-series clustering analysis, using dynamic time warping. Mobility restrictions resulted in lower numbers of new daily infections when compared to the unrestricted mobility scenario, in both metropolitan areas. Between March and September 2020, the official number of new infections followed overall a similar timeline to the one simulated considering only essential activities. At the municipal level, trends differ amongst the two metropolitan areas. The analysis of the effects of mobility in virus spread within different municipalities and regions could help tailoring future strategies and increase the public acceptance of eventual restrictions.
通勤流量和长途旅行是病毒传播的重要因素,尤其是空气传播的病毒。因此,研究不同流动情景与 SARS-CoV-2 病例的空间传播之间的关系是很重要的。我们旨在分析与不同流动情景相关的病毒传播模式,以便更好地理解封锁措施的效果,以及如何更好地利用这些措施。我们模拟了在两个大都市区——里斯本(LMA)和波尔图(PMA)的各市镇中,流动限制对 SARS-CoV-2 传播的影响。基于一个改良的 SEIR(易感-暴露-感染-移除)模型,我们根据不同的流动情景估计了一年内每日新增感染人数:限制在基本活动、工业活动、公共交通使用,以及包括所有交通方式的不受限制的流动情景。使用动态时间规整分析进一步探讨了每日新增感染人数的趋势。与不受限制的流动情景相比,在这两个大都市区,流动限制导致每日新增感染人数减少。在 2020 年 3 月至 9 月期间,官方新增感染人数总体上与仅考虑基本活动的模拟情况遵循相似的时间表。在市级层面,两个大都市区的趋势不同。分析不同市镇和地区的流动对病毒传播的影响,可以帮助制定未来的策略,并提高公众对未来限制措施的接受程度。