Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, MA 02215, United States.
J Neurosci Methods. 2013 Oct 30;220(1):64-74. doi: 10.1016/j.jneumeth.2013.08.006. Epub 2013 Sep 3.
Brain voltage activity displays distinct neuronal rhythms spanning a wide frequency range. How rhythms of different frequency interact - and the function of these interactions - remains an active area of research. Many methods have been proposed to assess the interactions between different frequency rhythms, in particular measures that characterize the relationship between the phase of a low frequency rhythm and the amplitude envelope of a high frequency rhythm. However, an optimal analysis method to assess this cross-frequency coupling (CFC) does not yet exist.
Here we describe a new procedure to assess CFC that utilizes the generalized linear modeling (GLM) framework.
We illustrate the utility of this procedure in three synthetic examples. The proposed GLM-CFC procedure allows a rapid and principled assessment of CFC with confidence bounds, scales with the intensity of the CFC, and accurately detects biphasic coupling.
Compared to existing methods, the proposed GLM-CFC procedure is easily interpretable, possesses confidence intervals that are easy and efficient to compute, and accurately detects biphasic coupling.
The GLM-CFC statistic provides a method for accurate and statistically rigorous assessment of CFC.
大脑电压活动显示出跨越广泛频率范围的独特神经元节律。不同频率的节律如何相互作用——以及这些相互作用的功能——仍然是一个活跃的研究领域。已经提出了许多方法来评估不同频率节律之间的相互作用,特别是那些表征低频节律相位与高频节律幅度包络之间关系的度量。然而,评估这种交叉频率耦合(CFC)的最佳分析方法尚不存在。
在这里,我们描述了一种利用广义线性模型(GLM)框架评估 CFC 的新方法。
我们在三个合成示例中说明了该程序的实用性。所提出的 GLM-CFC 程序允许快速、有原则地评估 CFC,并具有置信区间、与 CFC 的强度相匹配,并且能够准确检测双相耦合。
与现有方法相比,所提出的 GLM-CFC 程序易于解释,具有易于计算的置信区间,并且能够准确检测双相耦合。
GLM-CFC 统计量为准确和统计学上严格的 CFC 评估提供了一种方法。