Suppr超能文献

耐丁醇和异丁醇细菌的分离及其丁醇耐受性的生理特性研究。

Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.

机构信息

Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.

出版信息

Appl Environ Microbiol. 2013 Nov;79(22):6998-7005. doi: 10.1128/AEM.02900-13. Epub 2013 Sep 6.

Abstract

Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.

摘要

尽管它们作为生物燃料生产平台很重要,但迄今为止,仅鉴定出了非常有限数量的丁醇耐受细菌。在这里,我们广泛探索了来自各种环境样本的丁醇和异丁醇耐受细菌。总共分离出了 16 种能够耐受大于 2.0%(体积/体积)丁醇和异丁醇的需氧和厌氧细菌。16S rRNA 基因测序分析表明,这些分离株在至少九个属中具有系统发育分布:芽孢杆菌属、Lysinibacillus 属、Rummeliibacillus 属、短小芽孢杆菌属、Coprothermobacter 属、Caloribacterium 属、肠球菌属、Hydrogenoanaerobacterium 属和纤维单胞菌属,这些菌属于厚壁菌门和放线菌门。其中 10 株与先前鉴定的丁醇耐受细菌在系统发育上有明显区别。进一步对相对高度耐受丁醇的两个菌株 CM4A(需氧菌)和 GK12(专性厌氧菌)进行了表征。两种菌株在暴露于丁醇时都会改变其膜脂肪酸组成,即 CM4A 和 GK12 分别表现出增加的饱和脂肪酸和环丙烷脂肪酸(CFA)以及长链脂肪酸,这可能有助于维持膜的流动性。从菌株 CM4A 中克隆并在大肠杆菌中表达了编码 CFA 合酶的基因(cfa)。与没有 cfa 基因的大肠杆菌相比,重组大肠杆菌表现出相对更高的丁醇和异丁醇耐受性,这表明 cfa 可以赋予溶剂耐受性。通过连续传代使菌株 GK12 暴露于丁醇甚至提高了生长速度,这表明可能还有未知的机制也有助于溶剂耐受性。总之,这些结果表明,在环境中存在各种能够在 2.0%丁醇中生长的丁醇和异丁醇耐受细菌,并且它们具有各种策略来维持对有害溶剂的结构完整性。

相似文献

1
Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.
Appl Environ Microbiol. 2013 Nov;79(22):6998-7005. doi: 10.1128/AEM.02900-13. Epub 2013 Sep 6.
2
Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production.
Appl Microbiol Biotechnol. 2012 Aug;95(4):1083-94. doi: 10.1007/s00253-012-4197-7. Epub 2012 Jun 9.
3
Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824.
Appl Environ Microbiol. 2003 May;69(5):2831-41. doi: 10.1128/AEM.69.5.2831-2841.2003.
6
Screened butanol-tolerant Enterococcus faecium capable of butanol production.
Appl Biochem Biotechnol. 2012 Nov;168(6):1672-80. doi: 10.1007/s12010-012-9888-0. Epub 2012 Sep 8.
7
pH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A.
Biotechnol Biofuels. 2015 Apr 17;8:69. doi: 10.1186/s13068-015-0251-x. eCollection 2015.
8
Isolation and characterization of butanol-tolerant Staphylococcus aureus.
Biotechnol Lett. 2016 Nov;38(11):1929-1934. doi: 10.1007/s10529-016-2180-6. Epub 2016 Aug 1.
9
Butanol tolerance of carboxydotrophic bacteria isolated from manure composts.
Environ Technol. 2016 Aug;37(15):1970-82. doi: 10.1080/09593330.2015.1137360. Epub 2016 Feb 10.
10
An integrated network approach identifies the isobutanol response network of Escherichia coli.
Mol Syst Biol. 2009;5:277. doi: 10.1038/msb.2009.34. Epub 2009 Jun 16.

引用本文的文献

1
Bacterial Tolerance to 1-Butanol and 2-Butanol: Quantitative Assessment and Transcriptomic Response.
Int J Mol Sci. 2024 Dec 12;25(24):13336. doi: 10.3390/ijms252413336.
2
Transcriptional and post-transcriptional mechanisms modulate cyclopropane fatty acid synthase through small RNAs in .
J Bacteriol. 2024 Aug 22;206(8):e0004924. doi: 10.1128/jb.00049-24. Epub 2024 Jul 9.
3
Microbial host engineering for sustainable isobutanol production from renewable resources.
Appl Microbiol Biotechnol. 2024 Dec;108(1):33. doi: 10.1007/s00253-023-12821-9. Epub 2024 Jan 4.
4
To beat the heat - engineering of the most thermostable pyruvate decarboxylase to date.
RSC Adv. 2019 Sep 20;9(51):29743-29746. doi: 10.1039/c9ra06251c. eCollection 2019 Sep 18.
5
Tolerance against butanol stress by disrupting succinylglutamate desuccinylase in .
RSC Adv. 2019 Apr 15;9(21):11683-11695. doi: 10.1039/c8ra09711a. eCollection 2019 Apr 12.
6
Control of -Butanol Induced Lipidome Adaptations in .
Metabolites. 2021 Apr 29;11(5):286. doi: 10.3390/metabo11050286.
7
Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics.
Microorganisms. 2021 Jan 26;9(2):249. doi: 10.3390/microorganisms9020249.
8
Low cell surface hydrophobicity is one of the key factors for high butanol tolerance of Lactic acid bacteria.
Eng Life Sci. 2018 Nov 29;19(2):133-142. doi: 10.1002/elsc.201800141. eCollection 2019 Feb.
10
Streamlined assessment of membrane permeability and its application to membrane engineering of Escherichia coli for octanoic acid tolerance.
J Ind Microbiol Biotechnol. 2019 Jun;46(6):843-853. doi: 10.1007/s10295-019-02158-6. Epub 2019 Feb 26.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
Screened butanol-tolerant Enterococcus faecium capable of butanol production.
Appl Biochem Biotechnol. 2012 Nov;168(6):1672-80. doi: 10.1007/s12010-012-9888-0. Epub 2012 Sep 8.
4
Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea.
Appl Environ Microbiol. 2011 Sep;77(18):6400-8. doi: 10.1128/AEM.00694-11. Epub 2011 Jul 22.
5
Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials.
Biotechnol Adv. 2011 Jul-Aug;29(4):442-52. doi: 10.1016/j.biotechadv.2011.04.002. Epub 2011 Apr 12.
7
Screening and characterization of butanol-tolerant micro-organisms.
Lett Appl Microbiol. 2010 Apr;50(4):373-9. doi: 10.1111/j.1472-765X.2010.02808.x. Epub 2010 Jan 22.
8
"Candidatus Curculioniphilus buchneri," a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio.
Appl Environ Microbiol. 2010 Jan;76(1):275-82. doi: 10.1128/AEM.02154-09. Epub 2009 Oct 30.
9
How microbes tolerate ethanol and butanol.
N Biotechnol. 2009 Oct 31;26(3-4):117-21. doi: 10.1016/j.nbt.2009.06.984. Epub 2009 Jul 2.
10
Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations.
Appl Environ Microbiol. 2009 Jul;75(13):4653-6. doi: 10.1128/AEM.00225-09. Epub 2009 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验