Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research , Koto, Tokyo 135-8550, Japan.
Langmuir. 2013 Oct 8;29(40):12483-9. doi: 10.1021/la402742f. Epub 2013 Sep 25.
The first six peptides of multifunctional titanium binding peptide-1 bestowed recombinant L-ferritin, minT1-LF, was genetically engineered and used to fabricate multilayered nanoparticle architecture. The multifunctionality of minT1-LF enables specific binding of nanoparticle-accommodated minT1-LF to the silicon substrate surface and wet biochemical fabrication of gate oxide layer by its biomineralization activity. Three-dimensional (3D) nanoparticle architecture with multilayered structure was fabricated by the biological layer-by-layer method and embedded in a metal oxide-semiconductor device structure as a charge storage node of a flash memory device. The 3D-integrated multilayered nanoparticle architecture successfully worked as a charge storage node in flash memory devices that exhibited improved charge storage capacity compared with that of a conventional monolayer structure device.
多功能钛结合肽-1 的前 6 个肽赋予重组 L-铁蛋白,minT1-LF,经过基因工程改造,用于制造多层纳米颗粒结构。minT1-LF 的多功能性使其能够特异性结合纳米颗粒容纳的 minT1-LF 到硅衬底表面,并通过其生物矿化活性进行湿生化制造栅氧化层。通过生物层层法制造具有多层结构的三维(3D)纳米颗粒结构,并将其嵌入金属氧化物半导体器件结构中作为闪存器件的电荷存储节点。3D 集成多层纳米颗粒结构成功用作闪存器件的电荷存储节点,与传统的单层结构器件相比,其电荷存储容量得到了提高。