Suppr超能文献

从代谢时间序列数据中逐步推断可能的动态通量分布。

Stepwise inference of likely dynamic flux distributions from metabolic time series data.

机构信息

Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Bioinformatics. 2017 Jul 15;33(14):2165-2172. doi: 10.1093/bioinformatics/btx126.

Abstract

MOTIVATION

Most metabolic pathways contain more reactions than metabolites and therefore have a wide stoichiometric matrix that corresponds to infinitely many possible flux distributions that are perfectly compatible with the dynamics of the metabolites in a given dataset. This under-determinedness poses a challenge for the quantitative characterization of flux distributions from time series data and thus for the design of adequate, predictive models. Here we propose a method that reduces the degrees of freedom in a stepwise manner and leads to a dynamic flux distribution that is, in a statistical sense, likely to be close to the true distribution.

RESULTS

We applied the proposed method to the lignin biosynthesis pathway in switchgrass. The system consists of 16 metabolites and 23 enzymatic reactions. It has seven degrees of freedom and therefore admits a large space of dynamic flux distributions that all fit a set of metabolic time series data equally well. The proposed method reduces this space in a systematic and biologically reasonable manner and converges to a likely dynamic flux distribution in just a few iterations. The estimated solution and the true flux distribution, which is known in this case, show excellent agreement and thereby lend support to the method.

AVAILABILITY AND IMPLEMENTATION

The computational model was implemented in MATLAB (version R2014a, The MathWorks, Natick, MA). The source code is available at https://github.gatech.edu/VoitLab/Stepwise-Inference-of-Likely-Dynamic-Flux-Distributions and www.bst.bme.gatech.edu/research.php .

CONTACT

mojdeh@gatech.edu or eberhard.voit@bme.gatech.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

大多数代谢途径包含的反应多于代谢物,因此具有广泛的化学计量矩阵,对应于无限多的可能通量分布,这些分布与给定数据集中代谢物的动力学完全兼容。这种未确定度给从时间序列数据定量刻画通量分布以及设计适当的预测模型带来了挑战。在这里,我们提出了一种逐步降低自由度的方法,得到了一种在统计学意义上可能接近真实分布的动态通量分布。

结果

我们将所提出的方法应用于柳枝稷木质素生物合成途径。该系统包含 16 种代谢物和 23 种酶反应。它有七个自由度,因此允许存在一个很大的动态通量分布空间,所有这些分布都能很好地拟合一组代谢时间序列数据。所提出的方法以系统和合理的生物学方式缩小了这个空间,并在仅仅几次迭代后收敛到一个可能的动态通量分布。所估计的解与在这种情况下已知的真实通量分布之间具有极好的一致性,从而为该方法提供了支持。

可用性和实施

该计算模型是用 MATLAB(版本 R2014a,MathWorks,马萨诸塞州纳蒂克)实现的。源代码可在 https://github.gatech.edu/VoitLab/Stepwise-Inference-of-Likely-Dynamic-Flux-Distributionswww.bst.bme.gatech.edu/research.php 获得。

联系方式

mojdeh@gatech.edueberhard.voit@bme.gatech.edu

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

7
Principal metabolic flux mode analysis.主要代谢通量模式分析。
Bioinformatics. 2018 Jul 15;34(14):2409-2417. doi: 10.1093/bioinformatics/bty049.

引用本文的文献

2
Mathematical models of lignin biosynthesis.木质素生物合成的数学模型。
Biotechnol Biofuels. 2018 Feb 9;11:34. doi: 10.1186/s13068-018-1028-9. eCollection 2018.
3
The best models of metabolism.最佳代谢模型。
Wiley Interdiscip Rev Syst Biol Med. 2017 Nov;9(6). doi: 10.1002/wsbm.1391. Epub 2017 May 19.

本文引用的文献

1
Nonparametric dynamic modeling.非参数动态建模
Math Biosci. 2017 May;287:130-146. doi: 10.1016/j.mbs.2016.08.004. Epub 2016 Aug 30.
2
Identification of Metabolic Pathway Systems.代谢途径系统的识别
Front Genet. 2016 Feb 10;7:6. doi: 10.3389/fgene.2016.00006. eCollection 2016.
4
Automated identification of stratifying signatures in cellular subpopulations.细胞亚群分层特征的自动识别。
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2770-7. doi: 10.1073/pnas.1408792111. Epub 2014 Jun 16.
6
Predicting network activity from high throughput metabolomics.从高通量代谢组学预测网络活动。
PLoS Comput Biol. 2013;9(7):e1003123. doi: 10.1371/journal.pcbi.1003123. Epub 2013 Jul 4.
9
What is flux balance analysis?通量平衡分析是什么?
Nat Biotechnol. 2010 Mar;28(3):245-8. doi: 10.1038/nbt.1614.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验