Suppr超能文献

波动的动力使生长中的微管弯曲。

FLUCTUATING MOTOR FORCES BEND GROWING MICROTUBULES.

作者信息

Shekhar Nandini, Neelam Srujana, Wu Jun, Ladd Anthony Jc, Dickinson Richard B, Lele Tanmay P

机构信息

Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.

出版信息

Cell Mol Bioeng. 2013 Jun 1;6(2):120-129. doi: 10.1007/s12195-013-0281-z.

Abstract

Despite their rigidity, microtubules in living cells bend significantly during polymerization resulting in greater curvature than can be explained by thermal forces alone. However, the source of the non-thermal forces that bend growing microtubules remains obscure. We analyzed the motion of microtubule tips in NIH-3T3 fibroblasts expressing EGFP-EB1, a fluorescent +TIP protein that specifically binds to the growing ends of microtubules. We found that dynein inhibition significantly reduced the deviation of the growing tip from its initial trajectory. Inhibiting myosin modestly reduced tip fluctuations, while simultaneous myosin and dynein inhibition caused no further decrease in fluctuations compared to dynein inhibition alone. Our results can be interpreted with a model in which dynein linkages play a key role in generating and transmitting fluctuating forces that bend growing microtubules.

摘要

尽管微管具有刚性,但活细胞中的微管在聚合过程中会显著弯曲,其曲率大于仅由热力所能解释的程度。然而,使正在生长的微管弯曲的非热力来源仍不清楚。我们分析了在表达EGFP-EB1的NIH-3T3成纤维细胞中微管尖端的运动,EGFP-EB1是一种荧光+TIP蛋白,它特异性地结合到微管的生长末端。我们发现,动力蛋白抑制显著降低了生长尖端与其初始轨迹的偏差。抑制肌球蛋白适度降低了尖端波动,而与单独抑制动力蛋白相比,同时抑制肌球蛋白和动力蛋白并没有使波动进一步降低。我们的结果可以用一个模型来解释,在这个模型中,动力蛋白连接在产生和传递使正在生长的微管弯曲的波动力量中起关键作用。

相似文献

1
FLUCTUATING MOTOR FORCES BEND GROWING MICROTUBULES.波动的动力使生长中的微管弯曲。
Cell Mol Bioeng. 2013 Jun 1;6(2):120-129. doi: 10.1007/s12195-013-0281-z.
2
Transient Pinning and Pulling: A Mechanism for Bending Microtubules.瞬时固定与牵拉:一种使微管弯曲的机制
PLoS One. 2016 Mar 14;11(3):e0151322. doi: 10.1371/journal.pone.0151322. eCollection 2016.
4
Effects of dynein on microtubule mechanics and centrosome positioning.动力蛋白对微管力学和中心体定位的影响。
Mol Biol Cell. 2011 Dec;22(24):4834-41. doi: 10.1091/mbc.E11-07-0611. Epub 2011 Oct 19.

引用本文的文献

1
Building on-chip cytoskeletal circuits via branched microtubule networks.通过分支微管网络构建片上细胞骨架电路。
Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2315992121. doi: 10.1073/pnas.2315992121. Epub 2024 Jan 17.
3
Characterization of microtubule buckling in living cells.活细胞中微管屈曲的特征描述。
Eur Biophys J. 2017 Sep;46(6):581-594. doi: 10.1007/s00249-017-1207-9. Epub 2017 Apr 19.
5
Microtubule-based force generation.基于微管的力产生。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 May;9(3). doi: 10.1002/wnan.1428. Epub 2016 Aug 25.
6
Transient Pinning and Pulling: A Mechanism for Bending Microtubules.瞬时固定与牵拉:一种使微管弯曲的机制
PLoS One. 2016 Mar 14;11(3):e0151322. doi: 10.1371/journal.pone.0151322. eCollection 2016.
7
Multi-scale undulations in human aortic endothelial cell fibers.
Eur Phys J E Soft Matter. 2015 Feb;38(2):96. doi: 10.1140/epje/i2015-15012-9. Epub 2015 Feb 26.

本文引用的文献

2
Effects of dynein on microtubule mechanics and centrosome positioning.动力蛋白对微管力学和中心体定位的影响。
Mol Biol Cell. 2011 Dec;22(24):4834-41. doi: 10.1091/mbc.E11-07-0611. Epub 2011 Oct 19.
5
How dynein and microtubules rotate the nucleus.动力蛋白和微管如何使核旋转。
J Cell Physiol. 2011 Oct;226(10):2666-74. doi: 10.1002/jcp.22616.
7
Robust single-particle tracking in live-cell time-lapse sequences.活细胞延时序列中稳健的单粒子追踪
Nat Methods. 2008 Aug;5(8):695-702. doi: 10.1038/nmeth.1237. Epub 2008 Jul 20.
8
Nonequilibrium microtubule fluctuations in a model cytoskeleton.模型细胞骨架中的非平衡微管波动
Phys Rev Lett. 2008 Mar 21;100(11):118104. doi: 10.1103/PhysRevLett.100.118104.
9
Sedimentation of pairs of hydrodynamically interacting semiflexible filaments.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 1):061901. doi: 10.1103/PhysRevE.76.061901. Epub 2007 Dec 4.
10
Force fluctuations and polymerization dynamics of intracellular microtubules.细胞内微管的力波动与聚合动力学
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16128-33. doi: 10.1073/pnas.0703094104. Epub 2007 Oct 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验