Philippi Michael, You Changjiang, Richter Christian P, Schmidt Mercedes, Thien Jannis, Liße Domenik, Wollschläger Joachim, Piehler Jacob, Steinhart Martin
Institute for Chemistry of New Materials, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 49076 Osnabrück Germany
Department of Biology, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 11 49076 Osnabrück Germany
RSC Adv. 2019 Aug 9;9(43):24742-24750. doi: 10.1039/c9ra03440d. eCollection 2019 Aug 8.
We report the parallel generation of close-packed ordered silane nanodot arrays with nanodot diameters of few 100 nm and nearest-neighbor distances in the one-micron range. Capillary nanostamping of heterocyclic silanes coupled with ring-opening triggered by hydroxyl groups at the substrate surfaces yields nanodots consisting of silane monolayers with exposed terminal functional groups. Using spongy mesoporous silica stamps with methyl-terminated mesopore walls inert towards the heterocyclic silanes, we could manually perform multiple successive stamping cycles under ambient conditions without interruptions for ink refilling. Further functionalizations include the synthesis of polymer nanobrushes on the silane nanodots by surface-initiated atom-transfer radical polymerization. Proteins-of-interest fused to the HaloTag were site-specifically captured to silane nanodots functionalized by copper-free reactions with azide derivatives. Thus, bioorthogonal functionalization for bioanalytics with a spatial resolution in the one-micron range may be realized on solid supports compatible with fluorescence-based optical microscopy. The feature sizes of the silane nanodot arrays match well the length scales characteristic of a variety of biomolecular submicroscopic organizations in living cells, thus representing a compromise between miniaturization and the resolution limit of optical microscopy for sensitive high-throughput bioanalytics.
我们报道了紧密堆积的有序硅烷纳米点阵列的并行生成,其纳米点直径为几百纳米,最近邻距离在一微米范围内。杂环硅烷的毛细管纳米压印与底物表面羟基引发的开环反应相结合,产生了由具有暴露末端官能团的硅烷单层组成的纳米点。使用具有对杂环硅烷呈惰性的甲基封端中孔壁的海绵状介孔二氧化硅印章,我们可以在环境条件下手动进行多次连续压印循环,而无需中断来补充墨水。进一步的功能化包括通过表面引发的原子转移自由基聚合在硅烷纳米点上合成聚合物纳米刷。与卤代标签融合的目标蛋白通过与叠氮化物衍生物的无铜反应被位点特异性捕获到功能化的硅烷纳米点上。因此,在与基于荧光的光学显微镜兼容的固体支持物上,可以实现用于生物分析的具有一微米空间分辨率的生物正交功能化。硅烷纳米点阵列的特征尺寸与活细胞中各种生物分子亚微观组织的特征长度尺度非常匹配,因此代表了在小型化和用于灵敏高通量生物分析的光学显微镜分辨率极限之间的一种折衷。