Suppr超能文献

将圆锥体位置和大小指数扩展到包括角膜厚度和后表面信息,以用于检测圆锥角膜。

Expanding the cone location and magnitude index to include corneal thickness and posterior surface information for the detection of keratoconus.

机构信息

Department of Ophthalmology and Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio.

出版信息

Am J Ophthalmol. 2013 Dec;156(6):1102-11. doi: 10.1016/j.ajo.2013.07.018. Epub 2013 Sep 25.

Abstract

PURPOSE

To extend the capabilities of the Cone Location and Magnitude Index algorithm to include a combination of topographic information from the anterior and posterior corneal surfaces and corneal thickness measurements to further improve our ability to correctly identify keratoconus using this new index: ConeLocationMagnitudeIndex_X.

DESIGN

Retrospective case-control study.

METHODS

Three independent data sets were analyzed: 1 development and 2 validation. The AnteriorCornealPower index was calculated to stratify the keratoconus data from mild to severe. The ConeLocationMagnitudeIndex algorithm was applied to all tomography data collected using a dual Scheimpflug-Placido-based tomographer. The ConeLocationMagnitudeIndex_X formula, resulting from analysis of the Development set, was used to determine the logistic regression model that best separates keratoconus from normal and was applied to all data sets to calculate PercentProbabilityKeratoconus_X. The sensitivity/specificity of PercentProbabilityKeratoconus_X was compared with the original PercentProbabilityKeratoconus, which only uses anterior axial data.

RESULTS

The AnteriorCornealPower severity distribution for the combined data sets are 136 mild, 12 moderate, and 7 severe. The logistic regression model generated for ConeLocationMagnitudeIndex_X produces complete separation for the Development set. Validation Set 1 has 1 false-negative and Validation Set 2 has 1 false-positive. The overall sensitivity/specificity results for the logistic model produced using the ConeLocationMagnitudeIndex_X algorithm are 99.4% and 99.6%, respectively. The overall sensitivity/specificity results for using the original ConeLocationMagnitudeIndex algorithm are 89.2% and 98.8%, respectively.

CONCLUSIONS

ConeLocationMagnitudeIndex_X provides a robust index that can detect the presence or absence of a keratoconic pattern in corneal tomography maps with improved sensitivity/specificity from the original anterior surface-only ConeLocationMagnitudeIndex algorithm.

摘要

目的

将 Cone Location and Magnitude Index 算法的功能扩展到包括前角膜表面和后角膜表面的地形信息以及角膜厚度测量,以进一步提高使用该新指数(ConeLocationMagnitudeIndex_X)正确识别圆锥角膜的能力。

设计

回顾性病例对照研究。

方法

分析了三个独立的数据组:1 个开发组和 2 个验证组。通过计算前角膜屈光力指数将圆锥角膜数据从轻度到重度分层。将 ConeLocationMagnitudeIndex 算法应用于使用双 Scheimpflug-Placido 基断层扫描仪收集的所有断层扫描数据。分析开发组数据后,得到 ConeLocationMagnitudeIndex_X 公式,用于确定最佳区分圆锥角膜和正常的逻辑回归模型,并将其应用于所有数据集以计算 PercentProbabilityKeratoconus_X。与仅使用前轴向数据的原始 PercentProbabilityKeratoconus 相比,PercentProbabilityKeratoconus_X 的敏感性/特异性。

结果

合并数据集的前角膜屈光力严重程度分布为 136 例轻度、12 例中度和 7 例重度。为 ConeLocationMagnitudeIndex_X 生成的逻辑回归模型为开发组提供了完全分离。验证集 1 有 1 个假阴性,验证集 2 有 1 个假阳性。使用 ConeLocationMagnitudeIndex_X 算法生成的逻辑模型的整体敏感性/特异性结果分别为 99.4%和 99.6%。使用原始 ConeLocationMagnitudeIndex 算法的整体敏感性/特异性结果分别为 89.2%和 98.8%。

结论

ConeLocationMagnitudeIndex_X 提供了一个强大的指数,可以在角膜断层扫描图中检测到是否存在圆锥角膜模式,与原始仅使用前表面的 ConeLocationMagnitudeIndex 算法相比,敏感性/特异性得到提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验