Kavli Institute of Nanoscience, Delft University of Technology , Lorentzweg 1, 2628 CJ Delft, The Netherlands.
Nano Lett. 2013;13(11):5361-6. doi: 10.1021/nl402875m. Epub 2013 Oct 3.
Controlling the bandstructure through local-strain engineering is an exciting avenue for tailoring optoelectronic properties of materials at the nanoscale. Atomically thin materials are particularly well-suited for this purpose because they can withstand extreme nonhomogeneous deformations before rupture. Here, we study the effect of large localized strain in the electronic bandstructure of atomically thin MoS2. Using photoluminescence imaging, we observe a strain-induced reduction of the direct bandgap and funneling of photogenerated excitons toward regions of higher strain. To understand these results, we develop a nonuniform tight-binding model to calculate the electronic properties of MoS2 nanolayers with complex and realistic local strain geometries, finding good agreement with our experimental results.
通过局部应变工程来控制能带结构是一种在纳米尺度上调整材料光电性能的令人兴奋的途径。原子层厚度的材料特别适合这种目的,因为它们可以在破裂之前承受极端的非均匀变形。在这里,我们研究了原子层厚度的 MoS2 中电子能带结构中局部大应变的影响。通过光致发光成像,我们观察到应变诱导的直接带隙减小以及光生激子向应变较高区域的集中。为了理解这些结果,我们开发了一个非均匀紧束缚模型来计算具有复杂和实际局部应变几何形状的 MoS2 纳米层的电子性质,与我们的实验结果吻合良好。