Suppr超能文献

具有大量发散协变量的Cox比例风险模型的统计推断

Statistical Inference for Cox Proportional Hazards Models with a Diverging Number of Covariates.

作者信息

Xia Lu, Nan Bin, Li Yi

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington, USA.

Department of Statistics, University of California, Irvine, Irvine, California, USA.

出版信息

Scand Stat Theory Appl. 2023 Jun;50(2):550-571. doi: 10.1111/sjos.12595. Epub 2022 Apr 25.

Abstract

For statistical inference on regression models with a diverging number of covariates, the existing literature typically makes sparsity assumptions on the inverse of the Fisher information matrix. Such assumptions, however, are often violated under Cox proportion hazards models, leading to biased estimates with under-coverage confidence intervals. We propose a modified debiased lasso method, which solves a series of quadratic programming problems to approximate the inverse information matrix without posing sparse matrix assumptions. We establish asymptotic results for the estimated regression coefficients when the dimension of covariates diverges with the sample size. As demonstrated by extensive simulations, our proposed method provides consistent estimates and confidence intervals with nominal coverage probabilities. The utility of the method is further demonstrated by assessing the effects of genetic markers on patients' overall survival with the Boston Lung Cancer Survival Cohort, a large-scale epidemiology study investigating mechanisms underlying the lung cancer.

摘要

对于具有数量不断增加的协变量的回归模型进行统计推断时,现有文献通常对费希尔信息矩阵的逆做出稀疏性假设。然而,在考克斯比例风险模型下,这些假设常常被违背,导致估计有偏差且置信区间的覆盖范围不足。我们提出了一种改进的去偏套索方法,该方法通过求解一系列二次规划问题来近似信息矩阵的逆,而无需提出稀疏矩阵假设。当协变量的维度随着样本量增加时,我们建立了估计回归系数的渐近结果。大量模拟表明,我们提出的方法能提供具有标称覆盖概率的一致估计和置信区间。通过使用波士顿肺癌生存队列(一项调查肺癌潜在机制的大规模流行病学研究)评估基因标记对患者总生存的影响,进一步证明了该方法的实用性。

相似文献

7
High-Dimensional Gaussian Graphical Regression Models with Covariates.具有协变量的高维高斯图形回归模型
J Am Stat Assoc. 2023;118(543):2088-2100. doi: 10.1080/01621459.2022.2034632. Epub 2022 Mar 14.
10
Network Inference With the Lasso.基于 LASSO 的网络推断
Multivariate Behav Res. 2024 Jul-Aug;59(4):738-757. doi: 10.1080/00273171.2024.2317928. Epub 2024 Apr 8.

本文引用的文献

1
Testing and Confidence Intervals for High Dimensional Proportional Hazards Model.高维比例风险模型的检验与置信区间
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1415-1437. doi: 10.1111/rssb.12224. Epub 2016 Dec 26.
6
A Decade of GWAS Results in Lung Cancer.肺癌全基因组关联研究十年成果。
Cancer Epidemiol Biomarkers Prev. 2018 Apr;27(4):363-379. doi: 10.1158/1055-9965.EPI-16-0794. Epub 2017 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验