Suppr超能文献

4D CT 肺部通气图像受 4D CT 分类方法的影响。

4D CT lung ventilation images are affected by the 4D CT sorting method.

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5847 and Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California 95817.

出版信息

Med Phys. 2013 Oct;40(10):101907. doi: 10.1118/1.4820538.

Abstract

PURPOSE

Four-dimensional (4D) computed tomography (CT) ventilation imaging is a novel promising technique for lung functional imaging. The current standard 4D CT technique using phase-based sorting frequently results in artifacts, which may deteriorate the accuracy of ventilation imaging. The purpose of this study was to quantify the variability of 4D CT ventilation imaging due to 4D CT sorting.

METHODS

4D CT image sets from nine lung cancer patients were each sorted by the phase-based method and anatomic similarity-based method, designed to reduce artifacts, with corresponding ventilation images created for each method. Artifacts in the resulting 4D CT images were quantified with the artifact score which was defined based on the difference between the normalized cross correlation for CT slices within a CT data segment and that for CT slices bordering the interface between adjacent CT data segments. The ventilation variation was quantified using voxel-based Spearman rank correlation coefficients for all lung voxels, and Dice similarity coefficients (DSC) for the spatial overlap of low-functional lung volumes. Furthermore, the correlations with matching single-photon emission CT (SPECT) ventilation images (assumed ground truth) were evaluated for three patients to investigate which sorting method provides higher physiologic accuracy.

RESULTS

Anatomic similarity-based sorting reduced 4D CT artifacts compared to phase-based sorting (artifact score, 0.45 ± 0.14 vs 0.58 ± 0.24, p = 0.10 at peak-exhale; 0.63 ± 0.19 vs 0.71 ± 0.31, p = 0.25 at peak-inhale). The voxel-based correlation between the two ventilation images was 0.69 ± 0.26 on average, ranging from 0.03 to 0.85. The DSC was 0.71 ± 0.13 on average. Anatomic similarity-based sorting yielded significantly fewer lung voxels with paradoxical negative ventilation values than phase-based sorting (5.0 ± 2.6% vs 9.7 ± 8.4%, p = 0.05), and improved the correlation with SPECT ventilation regionally.

CONCLUSIONS

The variability of 4D CT ventilation imaging due to 4D CT sorting was moderate overall and substantial in some cases, suggesting that 4D CT artifacts are an important source of variations in 4D CT ventilation imaging. Reduction of 4D CT artifacts provided more physiologically convincing and accurate ventilation estimates. Further studies are needed to confirm this result.

摘要

目的

四维(4D)计算机断层扫描(CT)通气成像技术是一种新兴的肺部功能成像技术。目前,基于相位排序的标准 4D CT 技术经常会产生伪影,这可能会降低通气成像的准确性。本研究旨在量化由于 4D CT 排序而导致的 4D CT 通气成像的可变性。

方法

对 9 例肺癌患者的 4D CT 图像集分别采用基于相位的方法和基于解剖相似性的方法进行排序,以减少伪影,并为每种方法创建相应的通气图像。通过基于归一化互相关的差异来量化所得 4D CT 图像中的伪影评分,该差异是在 CT 数据段内的 CT 切片之间和相邻 CT 数据段之间的界面处的 CT 切片之间定义的。使用所有肺体素的基于体素的 Spearman 秩相关系数量化通气变化,并使用低功能肺体积的空间重叠的 Dice 相似系数(DSC)。此外,为了研究哪种排序方法提供更高的生理准确性,对 3 名患者的匹配单光子发射 CT(SPECT)通气图像(假定为真实值)进行了相关性评估。

结果

与基于相位的排序相比,基于解剖相似性的排序减少了 4D CT 伪影(峰值呼气时的伪影评分分别为 0.45 ± 0.14 和 0.58 ± 0.24,p = 0.10;峰值吸气时的伪影评分分别为 0.63 ± 0.19 和 0.71 ± 0.31,p = 0.25)。两种通气图像之间的基于体素的相关性平均为 0.69 ± 0.26,范围为 0.03 至 0.85。DSC 平均为 0.71 ± 0.13。基于解剖相似性的排序产生的具有反常负通气值的肺体素明显少于基于相位的排序(分别为 5.0 ± 2.6%和 9.7 ± 8.4%,p = 0.05),并改善了与 SPECT 通气的局部相关性。

结论

4D CT 排序引起的 4D CT 通气成像的可变性总体上是中度的,在某些情况下是较大的,这表明 4D CT 伪影是 4D CT 通气成像变化的重要来源。减少 4D CT 伪影可提供更具生理说服力和准确性的通气估计。需要进一步的研究来证实这一结果。

相似文献

1
4D CT lung ventilation images are affected by the 4D CT sorting method.
Med Phys. 2013 Oct;40(10):101907. doi: 10.1118/1.4820538.
2
SU-D-BRB-01: 4D-CT Lung Ventilation Images Vary with 4D-CT Sorting Techniques.
Med Phys. 2012 Jun;39(6Part3):3614. doi: 10.1118/1.4734673.
3
Reproducibility of four-dimensional computed tomography-based lung ventilation imaging.
Acad Radiol. 2012 Dec;19(12):1554-65. doi: 10.1016/j.acra.2012.07.006. Epub 2012 Sep 10.
4
Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.
Med Phys. 2011 May;38(5):2424-9. doi: 10.1118/1.3577601.
5
Target volume and artifact evaluation of a new data-driven 4D CT.
Pract Radiat Oncol. 2017 Sep-Oct;7(5):e345-e354. doi: 10.1016/j.prro.2017.01.014. Epub 2017 Feb 2.
7
Evaluating the accuracy of 4D-CT ventilation imaging: First comparison with Technegas SPECT ventilation.
Med Phys. 2017 Aug;44(8):4045-4055. doi: 10.1002/mp.12317. Epub 2017 Jun 16.
8
A multiple points method for 4D CT image sorting.
Med Phys. 2011 Feb;38(2):656-67. doi: 10.1118/1.3538921.
9
Estimating lung ventilation directly from 4D CT Hounsfield unit values.
Med Phys. 2016 Jan;43(1):33. doi: 10.1118/1.4937599.

引用本文的文献

1
A Retrospective Analysis of the First Clinical 5DCT Workflow.
Cancers (Basel). 2025 Feb 5;17(3):531. doi: 10.3390/cancers17030531.
2
4DCT image artifact detection using deep learning.
Med Phys. 2025 Feb;52(2):1096-1107. doi: 10.1002/mp.17513. Epub 2024 Nov 14.
3
Development of a novel 3D-printed dynamic anthropomorphic thorax phantom for evaluation of four-dimensional computed tomography.
Phys Imaging Radiat Oncol. 2024 Oct 20;32:100656. doi: 10.1016/j.phro.2024.100656. eCollection 2024 Oct.
5
Advances in CT-based lung function imaging for thoracic radiotherapy.
Front Oncol. 2024 Sep 2;14:1414337. doi: 10.3389/fonc.2024.1414337. eCollection 2024.
6
Incorporation of Functional Lung Imaging Into Radiation Therapy Planning in Patients With Lung Cancer: A Systematic Review and Meta-Analysis.
Int J Radiat Oncol Biol Phys. 2024 Oct 1;120(2):370-408. doi: 10.1016/j.ijrobp.2024.04.001. Epub 2024 Apr 15.
7
Systematic Evaluation of the Impact of Lung Segmentation Methods on 4-Dimensional Computed Tomography Ventilation Imaging Using a Large Patient Database.
Int J Radiat Oncol Biol Phys. 2024 Jan 1;118(1):242-252. doi: 10.1016/j.ijrobp.2023.08.017. Epub 2023 Aug 20.
8
A pilot study of function-based radiation therapy planning for lung cancer using hyperpolarized xenon-129 ventilation MRI.
J Appl Clin Med Phys. 2022 Mar;23(3):e13502. doi: 10.1002/acm2.13502. Epub 2022 Jan 19.
9
Improving radiation physics, tumor visualisation, and treatment quantification in radiotherapy with spectral or dual-energy CT.
J Appl Clin Med Phys. 2022 Jan;23(1):e13468. doi: 10.1002/acm2.13468. Epub 2021 Nov 7.
10

本文引用的文献

1
An automated method for comparing motion artifacts in cine four-dimensional computed tomography images.
J Appl Clin Med Phys. 2012 Nov 8;13(6):3838. doi: 10.1120/jacmp.v13i6.3838.
2
Hyperpolarized (3)He magnetic resonance imaging: comparison with four-dimensional x-ray computed tomography imaging in lung cancer.
Acad Radiol. 2012 Dec;19(12):1546-53. doi: 10.1016/j.acra.2012.08.007. Epub 2012 Sep 19.
3
Reproducibility of four-dimensional computed tomography-based lung ventilation imaging.
Acad Radiol. 2012 Dec;19(12):1554-65. doi: 10.1016/j.acra.2012.07.006. Epub 2012 Sep 10.
5
What can computed tomography and magnetic resonance imaging tell us about ventilation?
J Appl Physiol (1985). 2012 Aug 15;113(4):647-57. doi: 10.1152/japplphysiol.00353.2012. Epub 2012 May 31.
6
Pendelluft in chronic obstructive lung disease measured with lung sounds.
Pulm Med. 2012;2012:139395. doi: 10.1155/2012/139395. Epub 2012 Mar 21.
7
Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis.
Phys Med Biol. 2012 Apr 7;57(7):1855-71. doi: 10.1088/0031-9155/57/7/1855. Epub 2012 Mar 13.
8
Reproducibility of registration-based measures of lung tissue expansion.
Med Phys. 2012 Mar;39(3):1595-608. doi: 10.1118/1.3685589.
10
Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.
Med Phys. 2011 May;38(5):2424-9. doi: 10.1118/1.3577601.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验