Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.
Nat Methods. 2013 Nov;10(11):1122-6. doi: 10.1038/nmeth.2687. Epub 2013 Oct 6.
Existing super-resolution fluorescence microscopes compromise acquisition speed to provide subdiffractive sample information. We report an analog implementation of structured illumination microscopy that enables three-dimensional (3D) super-resolution imaging with a lateral resolution of 145 nm and an axial resolution of 350 nm at acquisition speeds up to 100 Hz. By using optical instead of digital image-processing operations, we removed the need to capture, store and combine multiple camera exposures, increasing data acquisition rates 10- to 100-fold over other super-resolution microscopes and acquiring and displaying super-resolution images in real time. Low excitation intensities allow imaging over hundreds of 2D sections, and combined physical and computational sectioning allow similar depth penetration to spinning-disk confocal microscopy. We demonstrate the capability of our system by imaging fine, rapidly moving structures including motor-driven organelles in human lung fibroblasts and the cytoskeleton of flowing blood cells within developing zebrafish embryos.
现有的超分辨率荧光显微镜为了提供亚衍射分辨率的样本信息而牺牲了采集速度。我们报告了一种结构光照明显微镜的模拟实现,该方法能够以高达 100 Hz 的采集速度实现三维(3D)超分辨率成像,其横向分辨率为 145nm,轴向分辨率为 350nm。通过使用光学而不是数字图像处理操作,我们无需捕获、存储和组合多个相机曝光,与其他超分辨率显微镜相比,数据采集速度提高了 10 到 100 倍,并能够实时获取和显示超分辨率图像。低激发强度允许对数百个 2D 切片进行成像,并且物理和计算联合切片允许与旋转盘共聚焦显微镜类似的深度穿透。我们通过对包括人肺成纤维细胞中马达驱动的细胞器和发育中的斑马鱼胚胎中流动血细胞的细胞骨架在内的精细、快速运动结构成像,展示了我们系统的功能。