Suppr超能文献

一种用于检测反应扩散系统中模式形成的高效非线性稳定性分析方法。

An efficient, nonlinear stability analysis for detecting pattern formation in reaction diffusion systems.

作者信息

Holmes William R

机构信息

Department of Mathematics, University of California Irvine, Irvine, CA, USA,

出版信息

Bull Math Biol. 2014 Jan;76(1):157-83. doi: 10.1007/s11538-013-9914-6. Epub 2013 Oct 25.

Abstract

Reaction diffusion systems are often used to study pattern formation in biological systems. However, most methods for understanding their behavior are challenging and can rarely be applied to complex systems common in biological applications. I present a relatively simple and efficient, nonlinear stability technique that greatly aids such analysis when rates of diffusion are substantially different. This technique reduces a system of reaction diffusion equations to a system of ordinary differential equations tracking the evolution of a large amplitude, spatially localized perturbation of a homogeneous steady state. Stability properties of this system, determined using standard bifurcation techniques and software, describe both linear and nonlinear patterning regimes of the reaction diffusion system. I describe the class of systems this method can be applied to and demonstrate its application. Analysis of Schnakenberg and substrate inhibition models is performed to demonstrate the methods capabilities in simplified settings and show that even these simple models have nonlinear patterning regimes not previously detected. The real power of this technique, however, is its simplicity and applicability to larger complex systems where other nonlinear methods become intractable. This is demonstrated through analysis of a chemotaxis regulatory network comprised of interacting proteins and phospholipids. In each case, predictions of this method are verified against results of numerical simulation, linear stability, asymptotic, and/or full PDE bifurcation analyses.

摘要

反应扩散系统常用于研究生物系统中的模式形成。然而,大多数理解其行为的方法具有挑战性,很少能应用于生物应用中常见的复杂系统。我提出了一种相对简单且高效的非线性稳定性技术,当扩散速率有显著差异时,该技术能极大地辅助此类分析。该技术将反应扩散方程组简化为常微分方程组,追踪均匀稳态的大振幅、空间局部扰动的演化。使用标准分岔技术和软件确定该系统的稳定性特性,描述了反应扩散系统的线性和非线性模式形成机制。我描述了可应用此方法的系统类别并展示了其应用。对施纳肯贝格模型和底物抑制模型进行分析,以证明该方法在简化设置中的能力,并表明即使是这些简单模型也存在先前未检测到的非线性模式形成机制。然而,该技术的真正优势在于其简单性以及对其他非线性方法难以处理的更大复杂系统的适用性。通过对由相互作用蛋白和磷脂组成的趋化调节网络的分析来证明这一点。在每种情况下,该方法的预测都与数值模拟、线性稳定性、渐近和/或全偏微分方程分岔分析的结果进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6898/4117191/2d7f4fb2292d/nihms-534931-f0001.jpg

相似文献

6
Bifurcation Analysis of Reaction Diffusion Systems on Arbitrary Surfaces.任意曲面上反应扩散系统的分岔分析
Bull Math Biol. 2017 Apr;79(4):788-827. doi: 10.1007/s11538-017-0255-8. Epub 2017 Feb 28.

引用本文的文献

3
Reaction-diffusion models in weighted and directed connectomes.加权有向连接体中的反应-扩散模型。
PLoS Comput Biol. 2022 Oct 28;18(10):e1010507. doi: 10.1371/journal.pcbi.1010507. eCollection 2022 Oct.
8
Small GTPase patterning: How to stabilise cluster coexistence.小 GTPase 模式化:如何稳定簇共存。
PLoS One. 2019 Mar 7;14(3):e0213188. doi: 10.1371/journal.pone.0213188. eCollection 2019.

本文引用的文献

2
Synthetic spatially graded Rac activation drives cell polarization and movement.合成的空间梯度 Rac 激活驱动细胞极化和运动。
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):E3668-77. doi: 10.1073/pnas.1210295109. Epub 2012 Nov 26.
10
Wave-pinning and cell polarity from a bistable reaction-diffusion system.双稳反应扩散系统中的波钉扎与细胞极性
Biophys J. 2008 May 1;94(9):3684-97. doi: 10.1529/biophysj.107.120824. Epub 2008 Jan 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验