Zhang Wei, Peissig Peggy, Kuang Zhaobin, Page David
Computer Sciences Department, University of Wisconsin-Madison.
Biomedical Informatics Research Center, Marshfield Clinic Research Institute.
Proc ACM Conf Health Inference Learn (2020). 2020 Apr;2020:30-39. doi: 10.1145/3368555.3384459.
Adverse drug reactions (ADRs) are detrimental and unexpected clinical incidents caused by drug intake. The increasing availability of massive quantities of longitudinal event data such as electronic health records (EHRs) has redefined ADR discovery as a big data analytics problem, where data-hungry deep neural networks are especially suitable because of the abundance of the data. To this end, we introduce neural self-controlled case series (NSCCS), a deep learning framework for ADR discovery from EHRs. NSCCS rigorously follows a self-controlled case series design to adjust implicitly and efficiently for individual heterogeneity. In this way, NSCCS is robust to time-invariant confounding issues and thus more capable of identifying associations that reflect the underlying mechanism between various types of drugs and adverse conditions. We apply NSCCS to a large-scale, real-world EHR dataset and empirically demonstrate its superior performance with comprehensive experiments on a benchmark ADR discovery task.
药物不良反应(ADR)是由药物摄入引起的有害且意外的临床事件。大量纵向事件数据(如电子健康记录(EHR))的日益可得,将ADR发现重新定义为一个大数据分析问题,在这个问题中,对数据需求巨大的深度神经网络因其丰富的数据而特别适用。为此,我们引入了神经自我对照病例系列(NSCCS),这是一个用于从EHR中发现ADR的深度学习框架。NSCCS严格遵循自我对照病例系列设计,以隐式且高效地调整个体异质性。通过这种方式,NSCCS对时不变混杂问题具有鲁棒性,因此更有能力识别反映各类药物与不良状况之间潜在机制的关联。我们将NSCCS应用于一个大规模的真实世界EHR数据集,并通过在基准ADR发现任务上的全面实验,实证证明了其卓越性能。