Janssen Research and Development LLC, 1125 Trenton-Harbourton Road, Room K30205, PO Box 200, Titusville, NJ, 08560, USA,
Drug Saf. 2013 Oct;36 Suppl 1:S171-80. doi: 10.1007/s40264-013-0110-2.
There has been only limited evaluation of statistical methods for identifying safety risks of drug exposure in observational healthcare data. Simulations can support empirical evaluation, but have not been shown to adequately model the real-world phenomena that challenge observational analyses.
To design and evaluate a probabilistic framework (OSIM2) for generating simulated observational healthcare data, and to use this data for evaluating the performance of methods in identifying associations between drug exposure and health outcomes of interest.
Seven observational designs, including case-control, cohort, self-controlled case series, and self-controlled cohort design were applied to 399 drug-outcome scenarios in 6 simulated datasets with no effect and injected relative risks of 1.25, 1.5, 2, 4, and 10, respectively.
Longitudinal data for 10 million simulated patients were generated using a model derived from an administrative claims database, with associated demographics, periods of drug exposure derived from pharmacy dispensings, and medical conditions derived from diagnoses on medical claims.
Simulation validation was performed through descriptive comparison with real source data. Method performance was evaluated using Area Under ROC Curve (AUC), bias, and mean squared error.
OSIM2 replicates prevalence and types of confounding observed in real claims data. When simulated data are injected with relative risks (RR) ≥ 2, all designs have good predictive accuracy (AUC > 0.90), but when RR < 2, no methods achieve 100 % predictions. Each method exhibits a different bias profile, which changes with the effect size.
OSIM2 can support methodological research. Results from simulation suggest method operating characteristics are far from nominal properties.
目前对于在观察性医疗保健数据中识别药物暴露安全风险的统计方法,仅有有限的评估。模拟可以支持经验评估,但尚未证明其能够充分模拟对观察性分析构成挑战的真实世界现象。
设计和评估用于生成模拟观察性医疗保健数据的概率框架(OSIM2),并使用该数据评估识别药物暴露与感兴趣的健康结果之间关联的方法的性能。
将七种观察性设计(包括病例对照、队列、自我对照病例系列和自我对照队列设计)应用于 6 个模拟数据集中的 399 个药物-结果场景,分别注入无效应和相对风险为 1.25、1.5、2、4 和 10。
使用源自行政索赔数据库的模型生成了 1000 万例模拟患者的纵向数据,其中包括人口统计学数据、从药房配药中得出的药物暴露期,以及从医疗索赔中得出的医疗状况。
通过与真实来源数据的描述性比较进行模拟验证。使用曲线下面积(AUC)、偏差和均方误差评估方法性能。
OSIM2 复制了真实索赔数据中观察到的流行率和混杂类型。当模拟数据中注入的相对风险(RR)≥2 时,所有设计的预测准确性都很高(AUC>0.90),但当 RR<2 时,没有一种方法能达到 100%的预测。每种方法都表现出不同的偏差特征,这些特征会随效应大小而变化。
OSIM2 可以支持方法学研究。模拟结果表明,方法的操作特征远非标称特性。