Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18425-30. doi: 10.1073/pnas.1308109110. Epub 2013 Oct 28.
We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures.
我们已经开发出了由 15nm 厚的多孔纳米晶硅(pnc-Si)膜制成的电渗流泵(EOP)。超薄的 pnc-Si 膜能够实现每单位电压的高电渗流。我们证明了电渗流理论与观察到的 pnc-Si 流速非常吻合。我们将高流速归因于横跨膜的 15nm 跨度的高电场。表面改性,如等离子体氧化或硅烷化,可以通过改变材料的动电电势来影响 pnc-Si 膜的电渗流速率。使用 pnc-Si 膜和 Ag/AgCl 电极的原型 EOP 被证明可以在施加 250mV 的电压下,通过 0.5mm 直径的毛细管以微升/分钟的范围泵送流量。这个基于硅的平台使得低电压、片上 EOP 可以很容易地集成到具有低背压的便携式微流控设备中。