Suppr超能文献

具有分子级薄硅纳米膜的高性能、低电压电渗流泵。

High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes.

机构信息

Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642.

出版信息

Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18425-30. doi: 10.1073/pnas.1308109110. Epub 2013 Oct 28.

Abstract

We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures.

摘要

我们已经开发出了由 15nm 厚的多孔纳米晶硅(pnc-Si)膜制成的电渗流泵(EOP)。超薄的 pnc-Si 膜能够实现每单位电压的高电渗流。我们证明了电渗流理论与观察到的 pnc-Si 流速非常吻合。我们将高流速归因于横跨膜的 15nm 跨度的高电场。表面改性,如等离子体氧化或硅烷化,可以通过改变材料的动电电势来影响 pnc-Si 膜的电渗流速率。使用 pnc-Si 膜和 Ag/AgCl 电极的原型 EOP 被证明可以在施加 250mV 的电压下,通过 0.5mm 直径的毛细管以微升/分钟的范围泵送流量。这个基于硅的平台使得低电压、片上 EOP 可以很容易地集成到具有低背压的便携式微流控设备中。

相似文献

2
Ultrathin silicon membranes for wearable dialysis.用于可穿戴透析的超薄硅膜。
Adv Chronic Kidney Dis. 2013 Nov;20(6):508-15. doi: 10.1053/j.ackd.2013.08.001.
6
Electroosmotic Pumps with Frits Synthesized from Potassium Silicate.由硅酸钾合成的带有烧结体的电渗泵。
PLoS One. 2015 Dec 2;10(12):e0144065. doi: 10.1371/journal.pone.0144065. eCollection 2015.
7
Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes.控制超薄纳米硅膜孔性能的方法。
J Phys Condens Matter. 2010 Nov 17;22(45):454134. doi: 10.1088/0953-8984/22/45/454134. Epub 2010 Oct 29.
9
Schottky contact on ultra-thin silicon nanomembranes under light illumination.光照下超薄硅纳米膜上的肖特基接触
Nanotechnology. 2014 Dec 5;25(48):485201. doi: 10.1088/0957-4484/25/48/485201. Epub 2014 Nov 7.

引用本文的文献

5
Neuromodulation using electroosmosis.电渗透介导的神经调节。
J Neural Eng. 2021 Jun 2;18(4). doi: 10.1088/1741-2552/ac00d3.
6
Microvascular Mimetics for the Study of Leukocyte-Endothelial Interactions.用于研究白细胞与内皮细胞相互作用的微血管模拟物
Cell Mol Bioeng. 2020 Jan 31;13(2):125-139. doi: 10.1007/s12195-020-00611-6. eCollection 2020 Apr.

本文引用的文献

2
Ballistic and non-ballistic gas flow through ultrathin nanopores.弹道和非弹道气体通过超薄纳米孔的流动。
Nanotechnology. 2012 Apr 13;23(14):145706. doi: 10.1088/0957-4484/23/14/145706. Epub 2012 Mar 21.
4
Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes.控制超薄纳米硅膜孔性能的方法。
J Phys Condens Matter. 2010 Nov 17;22(45):454134. doi: 10.1088/0953-8984/22/45/454134. Epub 2010 Oct 29.
8
A low-voltage nano-porous electroosmotic pump.一种低电压纳米多孔电动渗透泵。
J Colloid Interface Sci. 2010 Oct 15;350(2):465-70. doi: 10.1016/j.jcis.2010.07.024. Epub 2010 Jul 16.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验