Suppr超能文献

从时间序列数据中对代谢途径系统进行特征描述。

Characterizability of metabolic pathway systems from time series data.

机构信息

The Wallace H. Coulter, Department of Biomedical Engineering at Georgia Tech. and Emory University, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, United States.

出版信息

Math Biosci. 2013 Dec;246(2):315-25. doi: 10.1016/j.mbs.2013.01.008. Epub 2013 Feb 5.

Abstract

Over the past decade, the biomathematical community has devoted substantial effort to the complicated challenge of estimating parameter values for biological systems models. An even more difficult issue is the characterization of functional forms for the processes that govern these systems. Most parameter estimation approaches tacitly assume that these forms are known or can be assumed with some validity. However, this assumption is not always true. The recently proposed method of Dynamic Flux Estimation (DFE) addresses this problem in a genuinely novel fashion for metabolic pathway systems. Specifically, DFE allows the characterization of fluxes within such systems through an analysis of metabolic time series data. Its main drawback is the fact that DFE can only directly be applied if the pathway system contains as many metabolites as unknown fluxes. This situation is unfortunately rare. To overcome this roadblock, earlier work in this field had proposed strategies for augmenting the set of unknown fluxes with independent kinetic information, which however is not always available. Employing Moore-Penrose pseudo-inverse methods of linear algebra, the present article discusses an approach for characterizing fluxes from metabolic time series data that is applicable even if the pathway system is underdetermined and contains more fluxes than metabolites. Intriguingly, this approach is independent of a specific modeling framework and unaffected by noise in the experimental time series data. The results reveal whether any fluxes may be characterized and, if so, which subset is characterizable. They also help with the identification of fluxes that, if they could be determined independently, would allow the application of DFE.

摘要

在过去的十年中,生物数学界为估计生物系统模型的参数值这一复杂挑战付出了巨大努力。更困难的问题是描述这些系统所控制的过程的函数形式。大多数参数估计方法都默认这些形式是已知的,或者可以假设它们具有一定的有效性。然而,这种假设并不总是正确的。最近提出的动态通量估计 (DFE) 方法为代谢途径系统以一种全新的方式解决了这个问题。具体来说,DFE 通过分析代谢时间序列数据来描述这些系统中的通量。它的主要缺点是,只有当途径系统包含与未知通量一样多的代谢物时,DFE 才能直接应用。这种情况很少见。为了克服这个障碍,该领域的早期工作提出了用独立的动力学信息来扩充未知通量集的策略,但这种信息并不总是可用的。本文运用线性代数的 Moore-Penrose 伪逆方法,讨论了一种即使途径系统欠定且包含比代谢物更多通量的情况下,仍可从代谢时间序列数据中描述通量的方法。有趣的是,这种方法独立于特定的建模框架,不受实验时间序列数据中噪声的影响。该方法可以判断是否可以描述任何通量,如果可以,那么哪些子集可以描述。它还可以帮助确定如果可以独立确定的通量,是否可以应用 DFE。

相似文献

1
Characterizability of metabolic pathway systems from time series data.
Math Biosci. 2013 Dec;246(2):315-25. doi: 10.1016/j.mbs.2013.01.008. Epub 2013 Feb 5.
2
Identification of Metabolic Pathway Systems.
Front Genet. 2016 Feb 10;7:6. doi: 10.3389/fgene.2016.00006. eCollection 2016.
3
Estimation of dynamic flux profiles from metabolic time series data.
BMC Syst Biol. 2012 Jul 9;6:84. doi: 10.1186/1752-0509-6-84.
4
System estimation from metabolic time-series data.
Bioinformatics. 2008 Nov 1;24(21):2505-11. doi: 10.1093/bioinformatics/btn470. Epub 2008 Sep 4.
5
Nonparametric dynamic modeling.
Math Biosci. 2017 May;287:130-146. doi: 10.1016/j.mbs.2016.08.004. Epub 2016 Aug 30.
6
Incremental parameter estimation of kinetic metabolic network models.
BMC Syst Biol. 2012 Nov 21;6:142. doi: 10.1186/1752-0509-6-142.
7
Parameter estimation of dynamic biological network models using integrated fluxes.
BMC Syst Biol. 2014 Nov 18;8:127. doi: 10.1186/s12918-014-0127-x.
9
ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks.
PLoS Comput Biol. 2020 Apr 14;16(4):e1007799. doi: 10.1371/journal.pcbi.1007799. eCollection 2020 Apr.
10
Derivative processes for modelling metabolic fluxes.
Bioinformatics. 2014 Jul 1;30(13):1892-8. doi: 10.1093/bioinformatics/btu069. Epub 2014 Feb 26.

引用本文的文献

1
Hepatic cholesterol biosynthesis and dioxin-induced dysregulation: A multiscale computational approach.
Food Chem Toxicol. 2023 Nov;181:114086. doi: 10.1016/j.fct.2023.114086. Epub 2023 Oct 10.
2
Kinetic modeling of Stickland reactions-coupled methanogenesis for a methanogenic culture.
AMB Express. 2019 Jun 10;9(1):82. doi: 10.1186/s13568-019-0803-8.
3
The best models of metabolism.
Wiley Interdiscip Rev Syst Biol Med. 2017 Nov;9(6). doi: 10.1002/wsbm.1391. Epub 2017 May 19.
4
Stepwise inference of likely dynamic flux distributions from metabolic time series data.
Bioinformatics. 2017 Jul 15;33(14):2165-2172. doi: 10.1093/bioinformatics/btx126.
5
Nonparametric dynamic modeling.
Math Biosci. 2017 May;287:130-146. doi: 10.1016/j.mbs.2016.08.004. Epub 2016 Aug 30.
6
Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data.
Front Mol Biosci. 2016 May 3;3:15. doi: 10.3389/fmolb.2016.00015. eCollection 2016.
7
Identification of Metabolic Pathway Systems.
Front Genet. 2016 Feb 10;7:6. doi: 10.3389/fgene.2016.00006. eCollection 2016.
8
Derivative processes for modelling metabolic fluxes.
Bioinformatics. 2014 Jul 1;30(13):1892-8. doi: 10.1093/bioinformatics/btu069. Epub 2014 Feb 26.
10
Mesoscopic modeling as a starting point for computational analyses of cystic fibrosis as a systemic disease.
Biochim Biophys Acta. 2014 Jan;1844(1 Pt B):258-70. doi: 10.1016/j.bbapap.2013.03.023. Epub 2013 Apr 6.

本文引用的文献

1
Estimation of dynamic flux profiles from metabolic time series data.
BMC Syst Biol. 2012 Jul 9;6:84. doi: 10.1186/1752-0509-6-84.
2
Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method.
Bioinformatics. 2011 Jul 15;27(14):1964-70. doi: 10.1093/bioinformatics/btr293. Epub 2011 May 9.
3
Complex coordination of multi-scale cellular responses to environmental stress.
Mol Biosyst. 2011 Mar;7(3):731-41. doi: 10.1039/c0mb00102c. Epub 2010 Nov 18.
4
Parameter identifiability of power-law biochemical system models.
J Biotechnol. 2010 Sep 1;149(3):132-40. doi: 10.1016/j.jbiotec.2010.02.019. Epub 2010 Mar 1.
5
Estimation of metabolic pathway systems from different data sources.
IET Syst Biol. 2009 Nov;3(6):513-22. doi: 10.1049/iet-syb.2008.0180.
6
Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood.
Bioinformatics. 2009 Aug 1;25(15):1923-9. doi: 10.1093/bioinformatics/btp358. Epub 2009 Jun 8.
7
Identification of neutral biochemical network models from time series data.
BMC Syst Biol. 2009 May 5;3:47. doi: 10.1186/1752-0509-3-47.
8
Recent developments in parameter estimation and structure identification of biochemical and genomic systems.
Math Biosci. 2009 Jun;219(2):57-83. doi: 10.1016/j.mbs.2009.03.002. Epub 2009 Mar 25.
9
Modelling metabolic networks using power-laws and S-systems.
Essays Biochem. 2008;45:29-40. doi: 10.1042/BSE0450029.
10
System estimation from metabolic time-series data.
Bioinformatics. 2008 Nov 1;24(21):2505-11. doi: 10.1093/bioinformatics/btn470. Epub 2008 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验