Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
Neuron. 2013 Oct 30;80(3):718-28. doi: 10.1016/j.neuron.2013.09.044.
The brain is astonishing in its complexity and capacity for change. This has fascinated scientists for more than a century, filling the pages of this journal for the past 25 years. But a paradigm shift is underway. It seems likely that the plasticity that drives our ability to learn and remember can only be meaningful in the context of otherwise stable, reproducible, and predictable baseline neural function. Without the existence of potent mechanisms that stabilize neural function, our capacity to learn and remember would be lost in the chaos of daily experiential change. This underscores two great mysteries in neuroscience. How are the functional properties of individual neurons and neural circuits stably maintained throughout life? And, in the face of potent stabilizing mechanisms, how can neural circuitry be modified during neural development, learning, and memory? Answers are emerging in the rapidly developing field of homeostatic plasticity.
大脑在复杂性和变化能力方面令人惊叹。一个多世纪以来,这一直吸引着科学家的兴趣,在过去的 25 年里,这个期刊的篇幅都被它填满了。但一种范式转变正在进行中。似乎正是驱动我们学习和记忆能力的可塑性,只能在其他稳定、可重复和可预测的基线神经功能的背景下才有意义。如果没有强大的稳定神经功能的机制,我们的学习和记忆能力就会在日常经验变化的混乱中丧失。这凸显了神经科学中的两个重大谜团。个体神经元和神经网络的功能特性是如何在整个生命周期中稳定维持的?而且,在强大的稳定机制面前,神经回路在神经发育、学习和记忆过程中是如何被修改的?这些问题的答案正在不断发展的稳态可塑性领域中浮现。
Neuron. 2013-10-30
Neural Dev. 2018-6-1
PLoS Comput Biol. 2013-11-14
Curr Opin Neurobiol. 2018-10-25
Prog Brain Res. 2014
J Physiol Paris. 2003
Cold Spring Harb Perspect Biol. 2012-1-1
Neural Comput. 2019-10-15
Commun Biol. 2025-7-30
Proc Natl Acad Sci U S A. 2025-8-5
BMC Complement Med Ther. 2025-3-27
Neuron. 2013-10-16
Neuron. 2013-8-22
J Neurosci. 2013-8-7
Neuropharmacology. 2014-3