Rinné Susanne, Renigunta Vijay, Schlichthörl Günter, Zuzarte Marylou, Bittner Stefan, Meuth Sven G, Decher Niels, Daut Jürgen, Preisig-Müller Regina
Institute for Physiology and Pathophysiology, Cell Physiology, University of Marburg, Marburg, Germany,
Pflugers Arch. 2014 Aug;466(8):1559-70. doi: 10.1007/s00424-013-1384-z. Epub 2013 Nov 7.
We have identified a novel splice variant of the human and rat two-pore domain potassium (K2P) channel TREK-1. The splice variant TREK-1e results from skipping of exon 5, which causes a frame shift in exon 6. The frame shift produces a novel C-terminal amino acid sequence and a premature termination of translation, which leads to a loss of transmembrane domains M3 and M4 and of the second pore domain. RT-PCR experiments revealed a preferential expression of TREK-1e in kidney, adrenal gland, and amygdala. TREK-1e was nonfunctional when expressed in Xenopus oocytes. However, both the surface expression and the current density of full-length TREK-1 were reduced by co-expression of TREK-1e. Live cell imaging in COS-7 cells transfected with GFP-tagged TREK-1e showed that this splice variant was retained in the endoplasmic reticulum (ER). Attachment of the C-terminus of TREK-1e to two different reporter proteins (Kir2.1 and CD8) led to a strong reduction in the surface expression of these fusion proteins. Progressive truncation of the C-terminus of TREK-1e in these reporter constructs revealed a critical region (amino acids 198 to 205) responsible for the intracellular retention. Mutagenesis experiments indicated that amino acids I204 and W205 are key residues mediating the ER retention of TREK-1e. Our results suggest that the TREK-1e splice variant may interfere with the vesicular traffic of full-length TREK-1 channels from the ER to the plasma membrane. Thus, TREK-1e might modulate the copy number of functional TREK-1 channels at the cell surface, providing a novel mechanism for fine tuning of TREK-1 currents.
我们鉴定出了人类和大鼠双孔域钾离子(K2P)通道TREK-1的一种新型剪接变体。剪接变体TREK-1e是由于外显子5的跳跃导致的,这使得外显子6发生移码。移码产生了一个新的C端氨基酸序列并导致翻译提前终止,进而导致跨膜结构域M3和M4以及第二个孔结构域缺失。逆转录聚合酶链反应(RT-PCR)实验显示TREK-1e在肾脏、肾上腺和杏仁核中优先表达。当在非洲爪蟾卵母细胞中表达时,TREK-1e无功能。然而,共表达TREK-1e会降低全长TREK-1的表面表达和电流密度。用绿色荧光蛋白(GFP)标记的TREK-1e转染COS-7细胞后的活细胞成像显示,这种剪接变体保留在内质网(ER)中。将TREK-1e的C端连接到两种不同的报告蛋白(Kir2.1和CD8)上会导致这些融合蛋白的表面表达大幅降低。在这些报告构建体中对TREK-1e的C端进行逐步截短,揭示了一个负责细胞内滞留的关键区域(氨基酸198至205)。诱变实验表明,氨基酸I204和W205是介导TREK-1e内质网滞留的关键残基。我们的结果表明,TREK-1e剪接变体可能会干扰全长TREK-1通道从内质网到质膜的囊泡运输。因此,TREK-1e可能会调节细胞表面功能性TREK-1通道的拷贝数,为微调TREK-1电流提供一种新机制。