The Polar Center and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
Sci Rep. 2013 Nov 8;3:3125. doi: 10.1038/srep03125.
Population abundance data vary widely in quality and are rarely accurate. The two main components of error in such data are observation and process error. We used Bayesian state space models to estimate the observation and process error in time-series of 55 globally distributed populations of two species, Cervus elaphus (elk/red deer) and Rangifer tarandus (caribou/reindeer). We examined variation among populations and species in the magnitude of estimates of error components and density dependence using generalized linear models. Process error exceeded observation error in 75% of all populations, and on average, both components of error were greater in Rangifer than in Cervus populations. Observation error differed significantly across the different observation methods, and predation and time-series length differentially affected the error components. Comparing the Bayesian model results to traditional models that do not separate error components revealed the potential for misleading inferences about sources of variation in population dynamics.
种群数量数据在质量上差异很大,而且很少是准确的。此类数据中的两个主要误差组成部分是观测误差和过程误差。我们使用贝叶斯状态空间模型来估计两种物种(麋鹿/红鹿和驯鹿/驯鹿)的全球分布的 55 个种群的时间序列中的观测和过程误差。我们使用广义线性模型检验了误差分量和密度依赖性估计值在种群和物种之间的变化。在所有种群中,有 75%的种群的过程误差超过了观测误差,而且平均而言,在驯鹿种群中,两种误差成分都大于麋鹿种群。观测误差在不同的观测方法之间存在显著差异,捕食和时间序列长度对误差成分有不同的影响。将贝叶斯模型的结果与不分离误差组成部分的传统模型进行比较,揭示了对种群动态变化来源的推断可能存在误导。