Che-Castaldo Christian, Jenouvrier Stephanie, Youngflesh Casey, Shoemaker Kevin T, Humphries Grant, McDowall Philip, Landrum Laura, Holland Marika M, Li Yun, Ji Rubao, Lynch Heather J
Department of Ecology & Evolution, Stony Brook University, Life Sciences 106, Stony Brook, NY, 11794, USA.
Biology Department, Mailstop 50, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA.
Nat Commun. 2017 Oct 10;8(1):832. doi: 10.1038/s41467-017-00890-0.
Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.
集群繁殖的海鸟长期以来一直作为它们所依赖的海洋健康状况的指示物种。在固定的研究地点反复收集数量和繁殖数据,希望数量和生产力的变化可能有助于对海洋资源进行适应性管理,但它们是否适合这一目的往往并不清楚。为了解决这个问题,我们构建了一个贝叶斯种群动态模型,该模型包括过程误差和观测误差,应用于南极所有已知的阿德利企鹅数量数据(1982 - 2015年),覆盖了全球95%以上的阿德利企鹅种群。我们发现,在这个系统中过程误差超过了观测误差,而且整个大陆范围的“年份效应”对种群增长率有强烈影响。我们的研究结果对在南大洋反馈管理中使用阿德利企鹅具有重要意义,并表明对于动态受随机过程驱动的物种,跨空间汇总数量能提供关于真实种群变化的最快可靠信号。阿德利企鹅是南极关键的指示物种,但数据的零散性给将种群动态与关键驱动因素联系起来的努力带来了挑战。切 - 卡斯塔尔多等人通过使用泛南极贝叶斯模型推断缺失数据解决了这个问题,并表明空间汇总能得出关于动态的更稳健推断。