Becher Matthias A, Osborne Juliet L, Thorbek Pernille, Kennedy Peter J, Grimm Volker
Rothamsted Research, West Common Harpenden, AL5 2JQ, UK ; Environment & Sustainability Institute, University of Exeter Cornwall Campus, Penryn, TR10 9EZ, UK.
J Appl Ecol. 2013 Aug;50(4):868-880. doi: 10.1111/1365-2664.12112. Epub 2013 Jun 10.
The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality.However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management.We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee - varroa mite - virus interactions.We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes.. We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions.
在过去十年中,欧洲和美国养殖及野生蜂群的健康状况似乎大幅下降。蜂群的可持续性不仅对蜂蜜生产很重要,而且对农作物和野生植物以及其他昆虫传粉者的授粉也很重要。包括寄生虫、病原体、土地利用变化和农药使用在内的多种因果因素被认为是导致蜂群死亡率上升的原因。然而,尽管对蜜蜂及其蜂群的行为有详细了解,但目前还没有合适的工具来探索这个复杂系统在压力下的恢复机制。以系统的方式对所有压力源组合进行实证测试是不可行的。因此,我们建议采用一种基于机理建模的跨层次系统方法,来研究蜂群与土地管理的影响(以及它们之间的相互作用)。我们回顾了现有的与研究不同压力源对蜂群生长和生存影响相关的蜜蜂模型。这些模型大多描述了蜜蜂蜂群动态、觅食行为或蜜蜂 - 瓦螨 - 病毒相互作用。我们发现,蜜蜂蜂群、流行病学和觅食过程中的许多(但不是全部)过程在模型中得到了很好的理解和描述,但没有一个模型能够将蜂巢内动态和病理学与现实景观中的觅食动态联系起来。我们描述了如何利用所回顾模型中的构建模块构建一个新的综合模型,以模拟对蜜蜂蜂群系统的多因素影响。开发这样一种工具不仅会突出实证研究重点,还将为政策制定者和养蜂人提供一个重要的预测工具,我们列举了在蜜蜂疾病和景观管理决策方面的相关应用实例。