Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
Bioresour Technol. 2014 Jan;151:191-8. doi: 10.1016/j.biortech.2013.10.068. Epub 2013 Oct 30.
Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or directed mutagenesis, analysis of biophysical parameters, etc. In this work the relationship between differentiation and antibiotic production in lab-scale bioreactors was defined. Streptomyces coelicolor was used as a model strain. Morphological differentiation was comparable to that occurring during pre-sporulation stages in solid cultures: an initial compartmentalized mycelium suffers a programmed cell death, and remaining viable segments then differentiate to a second multinucleated antibiotic-producing mycelium. Differentiation was demonstrated to be one of the keys to interpreting biophysical fermentation parameters and to rationalizing the optimization of secondary metabolite production in bioreactors.
链霉菌是一种菌丝体形成的细菌,能产生三分之二临床上相关的次级代谢物。次级代谢产物的产生是在链霉菌生命周期的特定发育阶段被激活的。尽管如此,工业生物反应器中的链霉菌分化往往被低估了,而且管理的最重要参数仅与分化间接相关:培养基的修改、通过随机或定向诱变优化生产菌株、分析生物物理参数等。在这项工作中,定义了实验室规模生物反应器中分化和抗生素产生之间的关系。使用变铅青链霉菌作为模型菌株。形态分化与固体培养中孢子前阶段发生的情况相当:最初分隔的菌丝体经历程序性细胞死亡,然后剩余的存活片段分化为第二个多核抗生素产生的菌丝体。分化被证明是解释生物物理发酵参数和合理化生物反应器中次级代谢产物生产优化的关键之一。