Suppr超能文献

细菌中因基因缺失而产生的必需交叉喂养相互作用的适应性和稳定性。

Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria.

机构信息

Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.

1] Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany [2] Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany [3] Research Group Theoretical Systems Biology, Friedrich Schiller University Jena, Jena, Germany.

出版信息

ISME J. 2014 May;8(5):953-62. doi: 10.1038/ismej.2013.211. Epub 2013 Nov 28.

Abstract

Cross-feeding interactions, in which bacterial cells exchange costly metabolites to the benefit of both interacting partners, are very common in the microbial world. However, it generally remains unclear what maintains this type of interaction in the presence of non-cooperating types. We investigate this problem using synthetic cross-feeding interactions: by simply deleting two metabolic genes from the genome of Escherichia coli, we generated genotypes that require amino acids to grow and release other amino acids into the environment. Surprisingly, in a vast majority of cases, cocultures of two cross-feeding strains showed an increased Darwinian fitness (that is, rate of growth) relative to prototrophic wild type cells--even in direct competition. This unexpected growth advantage was due to a division of metabolic labour: the fitness cost of overproducing amino acids was less than the benefit of not having to produce others when they were provided by their partner. Moreover, frequency-dependent selection maintained cross-feeding consortia and limited exploitation by non-cooperating competitors. Together, our synthetic study approach reveals ecological principles that can help explain the widespread occurrence of obligate metabolic cross-feeding interactions in nature.

摘要

细菌细胞之间通过交换昂贵的代谢物使彼此受益的交叉喂养相互作用在微生物世界中非常普遍。然而,在存在不合作类型的情况下,这种相互作用是如何维持的,目前仍不清楚。我们使用合成的交叉喂养相互作用来研究这个问题:通过从大肠杆菌基因组中简单地删除两个代谢基因,我们生成了需要氨基酸才能生长并将其他氨基酸释放到环境中的基因型。令人惊讶的是,在绝大多数情况下,两种交叉喂养菌株的共培养物相对于原养型野生型细胞显示出更高的达尔文适应度(即生长速度)——即使是在直接竞争的情况下。这种意外的生长优势归因于代谢劳动的分工:过度产生氨基酸的适应成本低于从合作伙伴处获得其他氨基酸时不必自己生产的好处。此外,频率依赖性选择维持了交叉喂养联合体,并限制了非合作竞争者的利用。总之,我们的合成研究方法揭示了有助于解释自然界中必需的代谢交叉喂养相互作用广泛存在的生态原则。

相似文献

4
Reciprocal Fitness Feedbacks Promote the Evolution of Mutualistic Cooperation.互惠式适应反馈促进互利共生合作的演化。
Curr Biol. 2020 Sep 21;30(18):3580-3590.e7. doi: 10.1016/j.cub.2020.06.100. Epub 2020 Jul 23.
10
Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities.细菌群落中合作交叉喂养的普遍选择。
PLoS Comput Biol. 2016 Jun 17;12(6):e1004986. doi: 10.1371/journal.pcbi.1004986. eCollection 2016 Jun.

引用本文的文献

8
A framework for understanding collective microbiome metabolism.理解微生物组集体代谢的框架。
Nat Microbiol. 2024 Dec;9(12):3097-3109. doi: 10.1038/s41564-024-01850-3. Epub 2024 Nov 26.

本文引用的文献

1
Bacterial adaptation through loss of function.细菌通过失能适应。
PLoS Genet. 2013;9(7):e1003617. doi: 10.1371/journal.pgen.1003617. Epub 2013 Jul 11.
2
Microbial syntrophy: interaction for the common good.微生物共生:为共同利益而相互作用。
FEMS Microbiol Rev. 2013 May;37(3):384-406. doi: 10.1111/1574-6976.12019.
5
Selection-driven gene loss in bacteria.细菌中选择驱动的基因丢失。
PLoS Genet. 2012 Jun;8(6):e1002787. doi: 10.1371/journal.pgen.1002787. Epub 2012 Jun 28.
8
Evolution of functional specialization and division of labor.功能特化和劳动分工的演变。
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):E326-35. doi: 10.1073/pnas.1110521109. Epub 2012 Jan 24.
10
Extreme genome reduction in symbiotic bacteria.共生细菌的极端基因组缩减。
Nat Rev Microbiol. 2011 Nov 8;10(1):13-26. doi: 10.1038/nrmicro2670.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验