University of Oxford, Department of Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.
Nat Nanotechnol. 2011 Mar;6(3):166-9. doi: 10.1038/nnano.2010.284. Epub 2011 Feb 6.
Controlled motion at the nanoscale can be achieved by using Watson-Crick base-pairing to direct the assembly and operation of a molecular transport system consisting of a track, a motor and fuel, all made from DNA. Here, we assemble a 100-nm-long DNA track on a two-dimensional scaffold, and show that a DNA motor loaded at one end of the track moves autonomously and at a constant average speed along the full length of the track, a journey comprising 16 consecutive steps for the motor. Real-time atomic force microscopy allows direct observation of individual steps of a single motor, revealing mechanistic details of its operation. This precisely controlled, long-range transport could lead to the development of systems that could be programmed and routed by instructions encoded in the nucleotide sequences of the track and motor. Such systems might be used to create molecular assembly lines modelled on the ribosome.
通过利用沃森-克里克碱基配对来指导由轨道、马达和燃料组成的分子运输系统的组装和操作,从而实现纳米尺度的受控运动,所有这些都是由 DNA 制成的。在这里,我们在二维支架上组装了一条 100nm 长的 DNA 轨道,并证明了加载在轨道一端的 DNA 马达能够沿着轨道的全长自主且以恒定的平均速度移动,马达的行程包括 16 个连续的步骤。实时原子力显微镜可以直接观察单个马达的单个步骤,揭示其工作的机械细节。这种精确控制的远程运输可能会导致开发出可以通过轨道和马达的核苷酸序列中编码的指令进行编程和路由的系统。这样的系统可能被用来创建基于核糖体的分子装配线。