Suppr超能文献

用于混合实验的 FPGA 中的实时仿生中央模式生成器。

Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments.

机构信息

Laboratoire IMS, UMR Centre National de la Recherche Scientifique, University of Bordeaux Talence, France.

出版信息

Front Neurosci. 2013 Nov 21;7:215. doi: 10.3389/fnins.2013.00215. eCollection 2013.

Abstract

This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin-Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development.

摘要

这项对水蛭心跳神经网络系统的研究导致了一种低资源、实时、仿生数字硬件的开发,可用于混合实验。水蛭心跳神经网络是最简单的中央模式发生器(CPG)之一。在生物学中,CPG 提供了形成所有肌肉收缩顺序(心跳)和运动(行走、跑步等)基础的节律性爆发尖峰。以前已经研究过水蛭神经网络系统,并在 Hodgkin-Huxley 神经网络模型(HH)中对该 CPG 进行了形式化处理,这是迄今为止最复杂的模型。然而,神经模型所需的资源与其复杂性成正比。针对这一问题,本文描述了在现场可编程门阵列(FPGA)中实现 240 个 CPG 网络的仿生实现,使用简单模型(Izhikevich)并提出了一种新的突触模型:活动依赖性抑制突触。网络实现架构在单个计算核心上运行。该数字系统实时工作,所需资源很少,并且具有与复杂模型相同的爆发活动行为。该 CPG 的实现最初通过将其与复杂模型的模拟进行比较来验证。然后,将其活动与大鼠脊髓活动的药理学数据进行匹配。该数字系统为未来的混合实验开辟了道路,并代表了生物组织和人工神经网络混合的重要一步。这个 CPG 网络也可能有助于模拟各种动物的运动活动,并为神经假体开发开发混合实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b86b/3836270/fe8f842941de/fnins-07-00215-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验