Suppr超能文献

一种能够氧化分解纤维素和低聚纤维素的 C4-氧化裂解多糖单加氧酶。

A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.

机构信息

From the Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway.

出版信息

J Biol Chem. 2014 Jan 31;289(5):2632-42. doi: 10.1074/jbc.M113.530196. Epub 2013 Dec 9.

Abstract

Lignocellulosic biomass is a renewable resource that significantly can substitute fossil resources for the production of fuels, chemicals, and materials. Efficient saccharification of this biomass to fermentable sugars will be a key technology in future biorefineries. Traditionally, saccharification was thought to be accomplished by mixtures of hydrolytic enzymes. However, recently it has been shown that lytic polysaccharide monooxygenases (LPMOs) contribute to this process by catalyzing oxidative cleavage of insoluble polysaccharides utilizing a mechanism involving molecular oxygen and an electron donor. These enzymes thus represent novel tools for the saccharification of plant biomass. Most characterized LPMOs, including all reported bacterial LPMOs, form aldonic acids, i.e., products oxidized in the C1 position of the terminal sugar. Oxidation at other positions has been observed, and there has been some debate concerning the nature of this position (C4 or C6). In this study, we have characterized an LPMO from Neurospora crassa (NcLPMO9C; also known as NCU02916 and NcGH61-3). Remarkably, and in contrast to all previously characterized LPMOs, which are active only on polysaccharides, NcLPMO9C is able to cleave soluble cello-oligosaccharides as short as a tetramer, a property that allowed detailed product analysis. Using mass spectrometry and NMR, we show that the cello-oligosaccharide products released by this enzyme contain a C4 gemdiol/keto group at the nonreducing end.

摘要

木质纤维素生物质是一种可再生资源,它可以在很大程度上替代化石资源,用于生产燃料、化学品和材料。高效地将这种生物质糖化转化为可发酵糖将是未来生物精炼厂的一项关键技术。传统上,糖化被认为是通过水解酶混合物来完成的。然而,最近的研究表明,裂解多糖单加氧酶(LPMOs)通过催化不溶性多糖的氧化裂解来促进这个过程,其作用机制涉及分子氧和电子供体。因此,这些酶代表了植物生物质糖化的新型工具。大多数已鉴定的 LPMOs,包括所有已报道的细菌 LPMOs,都形成醛酸,即末端糖的 C1 位被氧化的产物。在其他位置的氧化已经被观察到,并且关于这个位置(C4 或 C6)的性质存在一些争议。在这项研究中,我们对来自粗糙脉孢菌(NcLPMO9C;也称为 NCU02916 和 NcGH61-3)的 LPMO 进行了表征。值得注意的是,与所有以前鉴定的仅在多糖上具有活性的 LPMOs 不同,NcLPMO9C 能够切割可溶性的纤维二糖寡糖,甚至短至四聚体,这一特性允许进行详细的产物分析。使用质谱和 NMR,我们表明该酶释放的纤维二糖寡糖产物在非还原端含有 C4 二醇/酮基。

相似文献

1
A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.
J Biol Chem. 2014 Jan 31;289(5):2632-42. doi: 10.1074/jbc.M113.530196. Epub 2013 Dec 9.
4
Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
Appl Environ Microbiol. 2021 Nov 24;87(24):e0165221. doi: 10.1128/AEM.01652-21. Epub 2021 Oct 6.
6
Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose.
J Chromatogr A. 2016 May 6;1445:46-54. doi: 10.1016/j.chroma.2016.03.064. Epub 2016 Mar 25.
7
Regioselective C4 and C6 Double Oxidation of Cellulose by Lytic Polysaccharide Monooxygenases.
ChemSusChem. 2022 Jan 21;15(2):e202102203. doi: 10.1002/cssc.202102203. Epub 2021 Dec 18.
8
Comparison of three seemingly similar lytic polysaccharide monooxygenases from suggests different roles in plant biomass degradation.
J Biol Chem. 2019 Oct 11;294(41):15068-15081. doi: 10.1074/jbc.RA119.008196. Epub 2019 Aug 20.
10
Mass spectrometric fragmentation patterns discriminate C1- and C4-oxidised cello-oligosaccharides from their non-oxidised and reduced forms.
Carbohydr Polym. 2020 Apr 15;234:115917. doi: 10.1016/j.carbpol.2020.115917. Epub 2020 Jan 26.

引用本文的文献

2
Functional variation among LPMOs revealed by the inhibitory effects of cyanide and buffer ions.
FEBS Lett. 2025 May;599(9):1317-1336. doi: 10.1002/1873-3468.15105. Epub 2025 Feb 6.
3
Transcriptional and secretome analysis of Rasamsonia emersonii lytic polysaccharide mono-oxygenases.
Appl Microbiol Biotechnol. 2024 Aug 21;108(1):444. doi: 10.1007/s00253-024-13240-0.
4
What are the 100 most cited fungal genera?
Stud Mycol. 2024 Jul;108:1-411. doi: 10.3114/sim.2024.108.01. Epub 2024 Jul 15.
6
The disordered C-terminal tail of fungal LPMOs from phytopathogens mediates protein dimerization and impacts plant penetration.
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2319998121. doi: 10.1073/pnas.2319998121. Epub 2024 Mar 21.
7
Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae.
IUCrJ. 2024 Mar 1;11(Pt 2):260-274. doi: 10.1107/S2052252524001386.
9
Assessing the role of redox partners in TthLPMO9G and its mutants: focus on HO production and interaction with cellulose.
Biotechnol Biofuels Bioprod. 2024 Feb 1;17(1):19. doi: 10.1186/s13068-024-02463-y.
10
Electrochemical Monitoring of Heterogeneous Peroxygenase Reactions Unravels LPMO Kinetics.
ACS Catal. 2024 Jan 10;14(2):1205-1219. doi: 10.1021/acscatal.3c05194. eCollection 2024 Jan 19.

本文引用的文献

1
The copper active site of CBM33 polysaccharide oxygenases.
J Am Chem Soc. 2013 Apr 24;135(16):6069-77. doi: 10.1021/ja402106e. Epub 2013 Apr 10.
3
Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes.
Biotechnol Biofuels. 2013 Mar 21;6(1):41. doi: 10.1186/1754-6834-6-41.
4
Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases.
J Chromatogr A. 2013 Jan 4;1271(1):144-52. doi: 10.1016/j.chroma.2012.11.048. Epub 2012 Nov 26.
5
Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenase.
Enzyme Microb Technol. 2013 Jan 10;52(1):60-7. doi: 10.1016/j.enzmictec.2012.10.007. Epub 2012 Oct 29.
7
NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions.
Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18779-84. doi: 10.1073/pnas.1208822109. Epub 2012 Oct 29.
9
Novel enzymes for the degradation of cellulose.
Biotechnol Biofuels. 2012 Jul 2;5(1):45. doi: 10.1186/1754-6834-5-45.
10
Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation.
Appl Environ Microbiol. 2012 Sep;78(17):6161-71. doi: 10.1128/AEM.01503-12. Epub 2012 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验