Suppr超能文献

识别在线社交系统的感知用户。

Identifying the perceptive users for online social systems.

作者信息

Liu Jian-Guo, Liu Xiao-Lu, Guo Qiang, Han Jing-Ti

机构信息

Data Science and Cloud Service Research Centre, Shanghai University of Finance and Economics, Shanghai 200433, PR China.

Department of Physics, Fribourg University, CH-1700 Fribourg, Switzerland.

出版信息

PLoS One. 2017 Jul 13;12(7):e0178118. doi: 10.1371/journal.pone.0178118. eCollection 2017.

Abstract

In this paper, the perceptive user, who could identify the high-quality objects in their initial lifespan, is presented. By tracking the ratings given to the rewarded objects, we present a method to identify the user perceptibility, which is defined as the capability that a user can identify these objects at their early lifespan. Moreover, we investigate the behavior patterns of the perceptive users from three dimensions: User activity, correlation characteristics of user rating series and user reputation. The experimental results for the empirical networks indicate that high perceptibility users show significantly different behavior patterns with the others: Having larger degree, stronger correlation of rating series and higher reputation. Furthermore, in view of the hysteresis in finding the rewarded objects, we present a general framework for identifying the high perceptibility users based on user behavior patterns. The experimental results show that this work is helpful for deeply understanding the collective behavior patterns for online users.

摘要

本文介绍了能够在优质对象的初始生命周期内识别它们的敏锐用户。通过跟踪给予有奖励对象的评分,我们提出了一种识别用户感知能力的方法,该能力被定义为用户在对象早期生命周期就能识别它们的能力。此外,我们从三个维度研究敏锐用户的行为模式:用户活跃度、用户评分序列的相关特征以及用户声誉。实证网络的实验结果表明,高感知能力用户与其他用户表现出显著不同的行为模式:具有更大的度数、更强的评分序列相关性以及更高的声誉。此外,鉴于发现有奖励对象时的滞后性,我们提出了一个基于用户行为模式识别高感知能力用户的通用框架。实验结果表明,这项工作有助于深入理解在线用户的集体行为模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b154/5509131/9a2c415b6881/pone.0178118.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验