Majumder Surya, Gautam Nandita, Basu Abhishek, Sau Arup, Geem Zong Woo, Sarkar Ram
Department of Computer Science and Engineering, Heritage Institute of Technology, Kolkata, India.
Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.
PLoS One. 2024 Mar 11;19(3):e0298527. doi: 10.1371/journal.pone.0298527. eCollection 2024.
Lung cancer is one of the leading causes of cancer-related deaths worldwide. To reduce the mortality rate, early detection and proper treatment should be ensured. Computer-aided diagnosis methods analyze different modalities of medical images to increase diagnostic precision. In this paper, we propose an ensemble model, called the Mitscherlich function-based Ensemble Network (MENet), which combines the prediction probabilities obtained from three deep learning models, namely Xception, InceptionResNetV2, and MobileNetV2, to improve the accuracy of a lung cancer prediction model. The ensemble approach is based on the Mitscherlich function, which produces a fuzzy rank to combine the outputs of the said base classifiers. The proposed method is trained and tested on the two publicly available lung cancer datasets, namely Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases (IQ-OTH/NCCD) and LIDC-IDRI, both of these are computed tomography (CT) scan datasets. The obtained results in terms of some standard metrics show that the proposed method performs better than state-of-the-art methods. The codes for the proposed work are available at https://github.com/SuryaMajumder/MENet.
肺癌是全球癌症相关死亡的主要原因之一。为降低死亡率,应确保早期检测和适当治疗。计算机辅助诊断方法通过分析不同模态的医学图像来提高诊断精度。在本文中,我们提出了一种集成模型,称为基于米氏函数的集成网络(MENet),它结合了从三个深度学习模型(即Xception、InceptionResNetV2和MobileNetV2)获得的预测概率,以提高肺癌预测模型的准确性。该集成方法基于米氏函数,该函数产生一个模糊排名来组合上述基础分类器的输出。所提出的方法在两个公开可用的肺癌数据集上进行了训练和测试,即伊拉克肿瘤教学医院/国家癌症疾病中心(IQ-OTH/NCCD)和LIDC-IDRI,这两个都是计算机断层扫描(CT)扫描数据集。根据一些标准指标获得的结果表明,所提出的方法比现有方法表现更好。所提出工作的代码可在https://github.com/SuryaMajumder/MENet上获取。