Suppr超能文献

部分矿化胶原原纤维、纤维和组织的力学建模。

Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue.

机构信息

Department of Mechanical Engineering and Materials Science, Washington University, , St Louis, MO 63130, USA.

出版信息

J R Soc Interface. 2013 Dec 18;11(92):20130835. doi: 10.1098/rsif.2013.0835. Print 2014 Mar 6.

Abstract

Progressive stiffening of collagen tissue by bioapatite mineral is important physiologically, but the details of this stiffening are uncertain. Unresolved questions about the details of the accommodation of bioapatite within and upon collagen's hierarchical structure have posed a central hurdle, but recent microscopy data resolve several major questions. These data suggest how collagen accommodates bioapatite at the lowest relevant hierarchical level (collagen fibrils), and suggest several possibilities for the progressive accommodation of bioapatite at higher hierarchical length scales (fibres and tissue). We developed approximations for the stiffening of collagen across spatial hierarchies based upon these data, and connected models across hierarchies levels to estimate mineralization-dependent tissue-level mechanics. In the five possible sequences of mineralization studied, percolation of the bioapatite phase proved to be an important determinant of the degree of stiffening by bioapatite. The models were applied to study one important instance of partially mineralized tissue, which occurs at the attachment of tendon to bone. All sequences of mineralization considered reproduced experimental observations of a region of tissue between tendon and bone that is more compliant than either tendon or bone, but the size and nature of this region depended strongly upon the sequence of mineralization. These models and observations have implications for engineered tissue scaffolds at the attachment of tendon to bone, bone development and graded biomimetic attachment of dissimilar hierarchical materials in general.

摘要

生物磷灰石矿化使胶原组织逐渐变硬在生理上很重要,但这种变硬的细节尚不清楚。胶原的分级结构中生物磷灰石的容纳细节问题尚未解决,这是一个主要障碍,但最近的显微镜数据解决了几个主要问题。这些数据表明了胶原如何在最低相关的分级水平(胶原原纤维)上容纳生物磷灰石,并为生物磷灰石在更高分级长度尺度(纤维和组织)上的逐渐容纳提出了几种可能性。我们根据这些数据为胶原在空间分级上的变硬开发了近似值,并将模型连接到不同的层次级别,以估计矿化相关的组织力学。在所研究的五种可能的矿化序列中,生物磷灰石相的渗滤被证明是生物磷灰石变硬程度的一个重要决定因素。这些模型被应用于研究一种重要的部分矿化组织,即肌腱与骨骼的连接处。所考虑的所有矿化序列都复制了实验观察到的肌腱和骨骼之间的组织区域,该区域比肌腱或骨骼更具弹性,但该区域的大小和性质强烈取决于矿化序列。这些模型和观察结果对肌腱与骨骼连接处的工程组织支架、骨发育以及一般不同分级材料的分级仿生附着具有重要意义。

相似文献

1
Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue.
J R Soc Interface. 2013 Dec 18;11(92):20130835. doi: 10.1098/rsif.2013.0835. Print 2014 Mar 6.
2
Functional grading of mineral and collagen in the attachment of tendon to bone.
Biophys J. 2009 Aug 19;97(4):976-85. doi: 10.1016/j.bpj.2009.05.043.
3
The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure.
J R Soc Interface. 2012 Aug 7;9(73):1774-86. doi: 10.1098/rsif.2011.0880. Epub 2012 Feb 16.
4
Synchrotron diffraction study of deformation mechanisms in mineralized tendon.
Phys Rev Lett. 2004 Oct 8;93(15):158101. doi: 10.1103/PhysRevLett.93.158101. Epub 2004 Oct 4.
6
Structure-mechanics relationships in mineralized tendons.
J Mech Behav Biomed Mater. 2015 Dec;52:72-84. doi: 10.1016/j.jmbbm.2015.03.013. Epub 2015 Apr 1.
7
The emergence of an unusual stiffness profile in hierarchical biological tissues.
Acta Biomater. 2013 Sep;9(9):8099-109. doi: 10.1016/j.actbio.2013.04.052. Epub 2013 May 10.
10
Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
Biophys J. 2008 Jun;94(11):4220-32. doi: 10.1529/biophysj.107.125567. Epub 2008 Feb 29.

引用本文的文献

2
Achieving tendon enthesis regeneration across length scales.
Curr Opin Biomed Eng. 2024 Sep;31. doi: 10.1016/j.cobme.2024.100547. Epub 2024 May 22.
3
Python tooth-inspired fixation device for enhanced rotator cuff repair.
Sci Adv. 2024 Jun 28;10(26):eadl5270. doi: 10.1126/sciadv.adl5270.
6
Acoustic radiation force on a long cylinder, and potential sound transduction by tomato trichomes.
Biophys J. 2022 Oct 18;121(20):3917-3926. doi: 10.1016/j.bpj.2022.08.038. Epub 2022 Aug 30.
8
Stem cell therapies in tendon-bone healing.
World J Stem Cells. 2021 Jul 26;13(7):753-775. doi: 10.4252/wjsc.v13.i7.753.
9
Joining soft tissues to bone: Insights from modeling and simulations.
Bone Rep. 2020 Dec 23;14:100742. doi: 10.1016/j.bonr.2020.100742. eCollection 2021 Jun.
10
Percolation networks inside 3D model of the mineralized collagen fibril.
Sci Rep. 2021 May 31;11(1):11398. doi: 10.1038/s41598-021-90916-x.

本文引用的文献

2
Micromechanics and Structural Response of Functionally Graded, Particulate-Matrix, Fiber-Reinforced Composites.
Int J Solids Struct. 2009 May 15;46(10):2136-2150. doi: 10.1016/j.ijsolstr.2008.08.010.
3
Mineral distributions at the developing tendon enthesis.
PLoS One. 2012;7(11):e48630. doi: 10.1371/journal.pone.0048630. Epub 2012 Nov 9.
4
The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure.
J R Soc Interface. 2012 Aug 7;9(73):1774-86. doi: 10.1098/rsif.2011.0880. Epub 2012 Feb 16.
5
Tissue-engineering strategies for the tendon/ligament-to-bone insertion.
Connect Tissue Res. 2012;53(2):95-105. doi: 10.3109/03008207.2011.650804. Epub 2011 Dec 20.
6
Viscoelastic properties of isolated collagen fibrils.
Biophys J. 2011 Jun 22;100(12):3008-15. doi: 10.1016/j.bpj.2011.04.052.
7
Minerals form a continuum phase in mature cancellous bone.
Calcif Tissue Int. 2011 May;88(5):351-61. doi: 10.1007/s00223-011-9462-8. Epub 2011 Jan 28.
8
Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.
Nano Lett. 2011 Feb 9;11(2):757-66. doi: 10.1021/nl103943u. Epub 2011 Jan 5.
9
Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression.
Tissue Eng Part A. 2011 Apr;17(7-8):1039-53. doi: 10.1089/ten.TEA.2009.0499. Epub 2011 Jan 9.
10
The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.
Nat Mater. 2010 Dec;9(12):1004-9. doi: 10.1038/nmat2875. Epub 2010 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验