Institute of Lung Biology and Disease and ‡Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health , 85764 Neuherberg/Munich, Germany.
ACS Nano. 2014 Jan 28;8(1):222-33. doi: 10.1021/nn403256v. Epub 2013 Dec 30.
Gold nanoparticles (AuNP) provide many opportunities in imaging, diagnostics, and therapy in nanomedicine. For the assessment of AuNP biokinetics, we intratracheally instilled into rats a suite of (198)Au-radio-labeled monodisperse, well-characterized, negatively charged AuNP of five different sizes (1.4, 2.8, 5, 18, 80, 200 nm) and 2.8 nm AuNP with positive surface charges. At 1, 3, and 24 h, the biodistribution of the AuNP was quantitatively measured by gamma-spectrometry to be used for comprehensive risk assessment. Our study shows that as AuNP get smaller, they are more likely to cross the air-blood barrier (ABB) depending strongly on the inverse diameter d(-1) of their gold core, i.e., their specific surface area (SSA). So, 1.4 nm AuNP (highest SSA) translocated most, while 80 nm AuNP (lowest SSA) translocated least, but 200 nm particles did not follow the d(-1) relation translocating significantly higher than 80 nm AuNP. However, relative to the AuNP that had crossed the ABB, their retention in most of the secondary organs and tissues was SSA-independent. Only renal filtration, retention in blood, and excretion via urine further declined with d(-1) of AuNP core. Translocation of 5, 18, and 80 nm AuNP is virtually complete after 1 h, while 1.4 nm AuNP continue to translocate until 3 h. Translocation of negatively charged 2.8 nm AuNP was significantly higher than for positively charged 2.8 nm AuNP. Our study shows that translocation across the ABB and accumulation and retention in secondary organs and tissues are two distinct processes, both depending specifically on particle characteristics such as SSA and surface charge.
金纳米粒子(AuNP)在医学纳米技术的成像、诊断和治疗方面提供了许多机会。为了评估 AuNP 的生物动力学,我们通过气管内滴注的方式将一系列(198)Au 放射性标记的、单分散的、具有良好特性的、带负电荷的 AuNP 注入大鼠体内,这些 AuNP 的粒径分别为 5 种不同的尺寸(1.4、2.8、5、18、80 和 200nm)和带正电荷的 2.8nm AuNP。在 1、3 和 24 小时时,通过伽马谱仪定量测量 AuNP 的生物分布,以用于全面的风险评估。我们的研究表明,随着 AuNP 变得更小,它们更有可能穿过气-血屏障(ABB),这强烈依赖于它们金核的倒数直径 d(-1),即它们的比表面积(SSA)。因此,1.4nm 的 AuNP(具有最高的 SSA)迁移最多,而 80nm 的 AuNP(具有最低的 SSA)迁移最少,但 200nm 的粒子不遵循 d(-1)关系,迁移量明显高于 80nm 的 AuNP。然而,与已经穿过 ABB 的 AuNP 相比,它们在大多数次级器官和组织中的保留与 SSA 无关。只有肾过滤、血液中的保留和通过尿液的排泄随 AuNP 核的 d(-1)进一步下降。5、18 和 80nm 的 AuNP 在 1 小时后几乎完全迁移,而 1.4nm 的 AuNP 继续迁移直到 3 小时。带负电荷的 2.8nm AuNP 的迁移率明显高于带正电荷的 2.8nm AuNP。我们的研究表明,穿过 ABB 的迁移以及在次级器官和组织中的积累和保留是两个不同的过程,这两个过程都具体取决于颗粒特性,如 SSA 和表面电荷。