School of Optometry, Indiana University, Bloomington, USA.
Ophthalmic Physiol Opt. 2014 May;34(3):309-20. doi: 10.1111/opo.12114. Epub 2014 Jan 7.
To test competing hypotheses (Stiles Crawford pupil apodising or superior imaging of high spatial frequencies by the central pupil) for the pupil size independence of subjective refractions in the presence of primary spherical aberration.
Subjective refractions were obtained with a variety of test stimuli (high contrast letters, urban cityscape, high and low spatial frequency gratings) while modulating pupil diameter, levels of primary spherical aberration and pupil apodisation. Subjective refractions were also obtained with low-pass and high-pass stimuli and using 'darker' and 'sharper' subjective criteria.
Subjective refractions for stimuli containing high spatial frequencies focus a near paraxial region of the pupil and are affected only slightly by level of Seidel spherical aberration, degree of pupil apodisation and pupil diameter, and generally focused a radius of about 1-1.5 mm from the pupil centre. Low spatial frequency refractions focus a marginal region of the pupil, and are significantly affected by level of spherical aberration, amount of pupil apodisation, and pupil size. Clinical refractions that employ the 'darker' or 'sharper' subjective criteria bias the patient to use lower or higher spatial frequencies, respectively.
In the presence of significant levels of spherical aberration, the pupil size independence of subjective refractions occurs with or without Stiles Crawford apodisation for refractions that optimise high spatial frequency content in the image. If low spatial frequencies are optimised by a subjective refraction, spherical refractive error varies with spherical aberration, pupil size, and level of apodisation. As light levels drop from photopic to scotopic, therefore, we expect a shift from pupil size independent to pupil size dependent subjective refractions. Emphasising a 'sharper' criterion during subjective refractions will improve image quality for high spatial frequencies and generate pupil size independent refractions.
在存在初级球差的情况下,测试竞争假设(斯泰尔斯·克劳福德瞳孔变细或中央瞳孔对高空间频率的更好成像)对主观折射的瞳孔大小独立性的影响。
通过调节瞳孔直径、初级球差水平和瞳孔变细程度,使用各种测试刺激物(高对比度字母、城市景观、高和低空间频率光栅)获得主观折射。还使用低通和高通刺激物以及“更暗”和“更清晰”的主观标准获得主观折射。
包含高空间频率的刺激物的主观折射聚焦于瞳孔的近轴区域,并且仅受 Seidel 球差水平、瞳孔变细程度和瞳孔直径的轻微影响,通常聚焦于瞳孔中心半径约 1-1.5mm 的区域。低空间频率的折射聚焦于瞳孔的边缘区域,并且受到球差水平、瞳孔变细程度和瞳孔大小的显著影响。使用“更暗”或“更清晰”主观标准的临床折射会使患者分别偏向使用较低或较高的空间频率。
在存在显著水平的球差的情况下,对于优化图像中高空间频率内容的折射,主观折射的瞳孔大小独立性会在存在或不存在斯泰尔斯·克劳福德变细的情况下发生。如果低空间频率通过主观折射得到优化,那么球镜折射误差会随球差、瞳孔大小和变细程度而变化。因此,随着光强度从明视觉降至暗视觉,我们预计会从瞳孔大小独立的主观折射转变为瞳孔大小依赖的主观折射。在主观折射中强调“更清晰”的标准将提高高空间频率的图像质量并产生瞳孔大小独立的折射。