Suppr超能文献

基于细胞的1型糖尿病治疗的组织工程方法。

Tissue engineering approaches to cell-based type 1 diabetes therapy.

作者信息

Amer Luke D, Mahoney Melissa J, Bryant Stephanie J

机构信息

1 Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado.

出版信息

Tissue Eng Part B Rev. 2014 Oct;20(5):455-67. doi: 10.1089/ten.TEB.2013.0462. Epub 2014 Apr 22.

Abstract

Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of insulin-producing pancreatic β-cells. Cell-based therapies, involving the transplantation of functional β-cells into diabetic patients, have been explored as a potential long-term treatment for this condition; however, success is limited. A tissue engineering approach of culturing insulin-producing cells with extracellular matrix (ECM) molecules in three-dimensional (3D) constructs has the potential to enhance the efficacy of cell-based therapies for diabetes. When cultured in 3D environments, insulin-producing cells are often more viable and secrete more insulin than those in two dimensions. The addition of ECM molecules to the culture environments, depending on the specific type of molecule, can further enhance the viability and insulin secretion. This review addresses the different cell sources that can be utilized as β-cell replacements, the essential ECM molecules for the survival of these cells, and the 3D culture techniques that have been used to benefit cell function.

摘要

1型糖尿病是一种自身免疫性疾病,由产生胰岛素的胰腺β细胞被破坏所致。基于细胞的疗法,即将功能性β细胞移植到糖尿病患者体内,已被探索作为这种疾病的一种潜在长期治疗方法;然而,成效有限。一种在三维(3D)构建物中用细胞外基质(ECM)分子培养产生胰岛素细胞的组织工程方法,有潜力提高基于细胞的糖尿病治疗的疗效。当在3D环境中培养时,产生胰岛素的细胞通常比在二维环境中的细胞更具活力,且分泌更多胰岛素。根据分子的具体类型,向培养环境中添加ECM分子可进一步提高细胞活力和胰岛素分泌。本综述探讨了可用作β细胞替代物的不同细胞来源、这些细胞存活所必需的ECM分子,以及已用于促进细胞功能的3D培养技术。

相似文献

1
Tissue engineering approaches to cell-based type 1 diabetes therapy.
Tissue Eng Part B Rev. 2014 Oct;20(5):455-67. doi: 10.1089/ten.TEB.2013.0462. Epub 2014 Apr 22.
2
Pancreatic extracellular matrix and platelet-rich plasma constructing injectable hydrogel for pancreas tissue engineering.
Artif Organs. 2020 Dec;44(12):e532-e551. doi: 10.1111/aor.13775. Epub 2020 Sep 11.
4
The use of β-cell transcription factors in engineering artificial β cells from non-pancreatic tissue.
Gene Ther. 2015 Jan;22(1):1-8. doi: 10.1038/gt.2014.93. Epub 2014 Oct 23.
5
Electrospun Nanofibers for Diabetes: Tissue Engineering and Cell-Based Therapies.
Curr Stem Cell Res Ther. 2019;14(2):152-168. doi: 10.2174/1574888X13666181018150107.
8
9
Bioprinting and Cellular Therapies for Type 1 Diabetes.
Trends Biotechnol. 2017 Nov;35(11):1025-1034. doi: 10.1016/j.tibtech.2017.07.006. Epub 2017 Aug 5.
10
How to make insulin-producing pancreatic β cells for diabetes treatment.
Sci China Life Sci. 2017 Mar;60(3):239-248. doi: 10.1007/s11427-016-0211-3. Epub 2016 Oct 27.

引用本文的文献

1
Molecular dynamics simulation in tissue engineering.
Bioimpacts. 2024 Aug 3;15:30160. doi: 10.34172/bi.30160. eCollection 2025.
2
The Role of Biotechnology in Latest Therapeutic Approaches for Diabetes Mellitus.
Avicenna J Med Biotechnol. 2024 Apr-Jun;16(2):66-67. doi: 10.18502/ajmb.v16i2.14854.
3
New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research.
Pharmaceutics. 2023 Feb 22;15(3):725. doi: 10.3390/pharmaceutics15030725.
4
Decellularization of Human Pancreatic Fragments with Pronounced Signs of Structural Changes.
Int J Mol Sci. 2022 Dec 21;24(1):119. doi: 10.3390/ijms24010119.
5
Molecular study of the proliferation process of beta cells derived from pluripotent stem cells.
Mol Biol Rep. 2022 Feb;49(2):1429-1436. doi: 10.1007/s11033-021-06892-y. Epub 2021 Nov 3.
6
Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: An Update.
Pharmaceutics. 2021 Sep 27;13(10):1568. doi: 10.3390/pharmaceutics13101568.
7
Nanofiber-based systems intended for diabetes.
J Nanobiotechnology. 2021 Oct 12;19(1):317. doi: 10.1186/s12951-021-01065-2.
9
An Overview on Probiotics as an Alternative Strategy for Prevention and Treatment of Human Diseases.
Iran J Pharm Res. 2019 Fall;18(Suppl1):31-50. doi: 10.22037/ijpr.2020.112232.13620.
10
Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus.
Pharmaceutics. 2019 Nov 12;11(11):597. doi: 10.3390/pharmaceutics11110597.

本文引用的文献

1
Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering.
Biomaterials. 2013 Sep;34(28):6760-72. doi: 10.1016/j.biomaterials.2013.05.066. Epub 2013 Jun 17.
2
Multicenter Australian trial of islet transplantation: improving accessibility and outcomes.
Am J Transplant. 2013 Jul;13(7):1850-8. doi: 10.1111/ajt.12250. Epub 2013 May 13.
3
The generation of pancreatic β-cell spheroids in a simulated microgravity culture system.
Biomaterials. 2013 Jul;34(23):5785-91. doi: 10.1016/j.biomaterials.2013.04.003. Epub 2013 May 2.
4
Maintaining functional islets through encapsulation in an injectable saccharide-peptide hydrogel.
Biomaterials. 2013 May;34(16):3984-3991. doi: 10.1016/j.biomaterials.2013.02.007. Epub 2013 Mar 7.
5
Macro- or microencapsulation of pig islets to cure type 1 diabetes.
World J Gastroenterol. 2012 Dec 21;18(47):6885-93. doi: 10.3748/wjg.v18.i47.6885.
6
Potential role of mesenchymal stromal cells in pancreatic islet transplantation.
Transplant Rev (Orlando). 2013 Jan;27(1):21-9. doi: 10.1016/j.trre.2012.11.003. Epub 2013 Jan 3.
8
Clinical islet xenotransplantation: how close are we?
Diabetes. 2012 Dec;61(12):3046-55. doi: 10.2337/db12-0033.
9
Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions.
Cell Death Differ. 2013 Mar;20(3):369-81. doi: 10.1038/cdd.2012.138. Epub 2012 Nov 16.
10
The prospect of induced pluripotent stem cells for diabetes mellitus treatment.
Ther Adv Endocrinol Metab. 2011 Oct;2(5):197-210. doi: 10.1177/2042018811420198.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验