Suppr超能文献

系列位置效应是从 MCI 向阿尔茨海默病痴呆转化的敏感预测指标。

Serial position effects are sensitive predictors of conversion from MCI to Alzheimer's disease dementia.

机构信息

Memory Clinic, University Center for Medicine of Aging Basel, Felix Platter-Hospital, Basel, Switzerland.

Department of Mathematics and Technology, University of Applied Sciences Koblenz, Koblenz, Germany.

出版信息

Alzheimers Dement. 2014 Oct;10(5 Suppl):S420-4. doi: 10.1016/j.jalz.2013.09.012. Epub 2014 Jan 10.

Abstract

BACKGROUND

It is unclear whether the predictive strength of established cognitive variables for progression to Alzheimer's disease (AD) dementia from mild cognitive impairment (MCI) varies depending on time to conversion. We investigated which cognitive variables were best predictors, and which of these variables remained predictive for patients with longer times to conversion.

METHODS

Seventy-five participants with MCI were assessed on measures of learning, memory, language, and executive function. Relative predictive strengths of these measures were analyzed using Cox regression models.

RESULTS

Measures of word-list position-namely, serial position scores-together with Short Delay Free Recall of word-list learning best predicted conversion to AD dementia. However, only serial position scores predicted those participants with longer time to conversion.

CONCLUSIONS

Results emphasize that the predictive strength of cognitive variables varies depending on time to conversion to dementia. Moreover, finer measures of learning captured by serial position scores were the most sensitive predictors of AD dementia.

摘要

背景

目前尚不清楚用于从轻度认知障碍(MCI)进展为阿尔茨海默病(AD)痴呆的既定认知变量的预测强度是否取决于向转化的时间。我们研究了哪些认知变量是最佳预测指标,以及这些变量对于向转化时间较长的患者是否仍然具有预测性。

方法

对 75 名患有 MCI 的参与者进行了学习、记忆、语言和执行功能方面的评估。使用 Cox 回归模型分析了这些测量的相对预测强度。

结果

单词列表位置的测量值,即序列位置分数,以及单词列表学习的短延迟自由回忆,是预测向 AD 痴呆转化的最佳指标。然而,只有序列位置分数预测了向转化时间较长的那些参与者。

结论

结果强调,认知变量的预测强度取决于向痴呆转化的时间。此外,序列位置分数所捕获的更精细的学习测量值是 AD 痴呆的最敏感预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验