Suppr超能文献

ADNI遗忘型轻度认知障碍中的生物学异质性。

Biological heterogeneity in ADNI amnestic mild cognitive impairment.

作者信息

Nettiksimmons Jasmine, DeCarli Charles, Landau Susan, Beckett Laurel

机构信息

Department of Psychiatry, University of California-San Francisco, San Francisco, CA, USA.

Department of Neurology and Center for Neuroscience, University of California-Davis, Sacramento, CA, USA.

出版信息

Alzheimers Dement. 2014 Sep;10(5):511-521.e1. doi: 10.1016/j.jalz.2013.09.003. Epub 2014 Jan 10.

Abstract

BACKGROUND

Previous work examining normal controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) identified substantial biological heterogeneity. We hypothesized that ADNI mild cognitive impairment (MCI) subjects would also exhibit heterogeneity with possible clinical implications.

METHODS

ADNI subjects diagnosed with amnestic MCI (n=138) were clustered based on baseline magnetic resonance imaging, cerebrospinal fluid, and serum biomarkers. The clusters were compared with respect to longitudinal atrophy, cognitive trajectory, and time to conversion.

RESULTS

Four clusters emerged with distinct biomarker patterns: The first cluster was biologically similar to normal controls and rarely converted to Alzheimer's disease (AD) during follow-up. The second cluster had characteristics of early Alzheimer's pathology. The third cluster showed the most severe atrophy but barely abnormal tau levels and a substantial proportion converted to clinical AD. The fourth cluster appeared to be pre-AD and nearly all converted to AD.

CONCLUSIONS

Subjects with MCI who were clinically similar showed substantial heterogeneity in biomarkers.

摘要

背景

先前对阿尔茨海默病神经影像倡议(ADNI)中的正常对照者进行的研究发现了显著的生物学异质性。我们推测,ADNI中的轻度认知障碍(MCI)受试者也会表现出异质性,并可能具有临床意义。

方法

根据基线磁共振成像、脑脊液和血清生物标志物,对诊断为遗忘型MCI的ADNI受试者(n = 138)进行聚类。比较各聚类在纵向萎缩、认知轨迹和转化时间方面的差异。

结果

出现了四个具有不同生物标志物模式的聚类:第一个聚类在生物学上与正常对照者相似,在随访期间很少转化为阿尔茨海默病(AD)。第二个聚类具有早期阿尔茨海默病病理学特征。第三个聚类显示出最严重的萎缩,但tau水平几乎没有异常,且很大一部分转化为临床AD。第四个聚类似乎处于AD前期,几乎全部转化为AD。

结论

临床症状相似的MCI受试者在生物标志物方面存在显著异质性。

相似文献

1
Biological heterogeneity in ADNI amnestic mild cognitive impairment.
Alzheimers Dement. 2014 Sep;10(5):511-521.e1. doi: 10.1016/j.jalz.2013.09.003. Epub 2014 Jan 10.
3
Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition.
Acta Neuropathol Commun. 2014 Mar 6;2:26. doi: 10.1186/2051-5960-2-26.
4
Detecting biological heterogeneity patterns in ADNI amnestic mild cognitive impairment based on volumetric MRI.
Brain Imaging Behav. 2020 Oct;14(5):1792-1804. doi: 10.1007/s11682-019-00115-6.
8
ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease.
Neuroimage Clin. 2014 Jan 4;4:461-72. doi: 10.1016/j.nicl.2013.12.012. eCollection 2014.

引用本文的文献

1
Revealing heterogeneity in mild cognitive impairment based on individualized structural covariance network.
Alzheimers Res Ther. 2025 May 15;17(1):106. doi: 10.1186/s13195-025-01752-4.
3
Examining heterogeneity in dementia using data-driven unsupervised clustering of cognitive profiles.
PLoS One. 2024 Nov 14;19(11):e0313425. doi: 10.1371/journal.pone.0313425. eCollection 2024.
4
From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion.
Biomedicines. 2024 Jul 26;12(8):1675. doi: 10.3390/biomedicines12081675.
5
Contributions of the ADNI Biostatistics Core.
Alzheimers Dement. 2024 Oct;20(10):7331-7339. doi: 10.1002/alz.14159. Epub 2024 Aug 14.
6
Definition and analysis of gray matter atrophy subtypes in mild cognitive impairment based on data-driven methods.
Front Aging Neurosci. 2024 Jun 4;16:1328301. doi: 10.3389/fnagi.2024.1328301. eCollection 2024.
7
AI for the prediction of early stages of Alzheimer's disease from neuroimaging biomarkers - A narrative review of a growing field.
Neurol Sci. 2024 Nov;45(11):5117-5127. doi: 10.1007/s10072-024-07649-8. Epub 2024 Jun 13.
9
Identification of Distinct Brain MRI Phenotypes and Their Association With Long-Term Dementia Risk in Community-Dwelling Older Adults.
Neurology. 2024 Apr 9;102(7):e209176. doi: 10.1212/WNL.0000000000209176. Epub 2024 Mar 12.

本文引用的文献

1
Brain injury biomarkers are not dependent on β-amyloid in normal elderly.
Ann Neurol. 2013 Apr;73(4):472-80. doi: 10.1002/ana.23816. Epub 2013 Feb 19.
4
Nonlinear registration of longitudinal images and measurement of change in regions of interest.
Med Image Anal. 2011 Aug;15(4):489-97. doi: 10.1016/j.media.2011.02.005. Epub 2011 Feb 23.
5
Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline.
Neurobiol Aging. 2010 Aug;31(8):1419-28. doi: 10.1016/j.neurobiolaging.2010.04.025. Epub 2010 Jun 9.
6
CSF biomarkers predict a more malignant outcome in Alzheimer disease.
Neurology. 2010 May 11;74(19):1531-7. doi: 10.1212/WNL.0b013e3181dd4dd8.
7
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.
Lancet Neurol. 2010 Jan;9(1):119-28. doi: 10.1016/S1474-4422(09)70299-6.
8
Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization.
Neurology. 2010 Jan 19;74(3):201-9. doi: 10.1212/WNL.0b013e3181cb3e25. Epub 2009 Dec 30.
9
Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR.
Inf Process Med Imaging. 2009;21:239-51. doi: 10.1007/978-3-642-02498-6_20.
10
Longitudinal study of CSF biomarkers in patients with Alzheimer's disease.
PLoS One. 2009 Jul 17;4(7):e6294. doi: 10.1371/journal.pone.0006294.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验