Suppr超能文献

理性选择和工程化外源性主要 σ 因子(σ(HrdB))以提高游动放线菌工业菌株的泰利霉素产量。

Rational selection and engineering of exogenous principal sigma factor (σ(HrdB)) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus.

机构信息

School of Food and Bioengineering, Qilu University of Technology, Jinan 250353, PR China.

出版信息

Microb Cell Fact. 2014 Jan 16;13:10. doi: 10.1186/1475-2859-13-10.

Abstract

BACKGROUND

Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27.

RESULTS

It was illuminated that the σ(HrdB) molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σ(HrdB) molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry.

CONCLUSIONS

Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy.

摘要

背景

转录工程在微生物的表型改善方面具有强大的能力。然而,由于该菌株中内源性转录因子的缺乏,无法将其直接应用于游动放线菌 L-27。在本研究中,通过合理选择外源转录因子,对 L-27 进行了转录工程改造,以提高其泰利霉素的产量。

结果

研究表明,σ(HrdB)分子在放线菌的一些属中具有很强的氨基酸序列相似性。结合这一优势和转录工程的能力,合理选择和工程化外源σ(HrdB)因子分子来改善 L-27。基于分子进化分析,从密西西比分枝杆菌 431、橙色小单孢菌 ATCC 27029 和沙雷氏菌 arenicola CNS-205 中选择了 hrdB 基因。随后进行了随机诱变、DNA 改组和定点突变,以产生多样化的突变体。通过筛选程序鉴定出一个重组体,产生的泰利霉素产量为 5.3mg/ml,比 L-27 提高了 2 倍以上。更重要的是,该工程菌株在 500 升中试规模发酵中表现出良好的性能,这意味着其在工业上具有有价值的潜在应用。

结论

通过合理选择和工程化外源转录因子,我们扩展了转录工程的应用。据我们所知,这是首次关注相关问题。此外,该策略在转录水平上具有高效代谢干扰的优势,可用于分析菌株的代谢和生理机制,特别是那些仅具有分类学信息的菌株。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6b0/3897980/4bacb4c53f42/1475-2859-13-10-1.jpg

相似文献

2
3
The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus.
Appl Microbiol Biotechnol. 2014 Nov;98(22):9295-309. doi: 10.1007/s00253-014-5969-z. Epub 2014 Aug 9.
4
Manipulating the regulatory genes for teicoplanin production in Actinoplanes teichomyceticus.
World J Microbiol Biotechnol. 2012 May;28(5):2095-100. doi: 10.1007/s11274-012-1013-6. Epub 2012 Feb 10.
5
Biosynthesis, biotechnological production, and application of teicoplanin: current state and perspectives.
Appl Microbiol Biotechnol. 2009 Sep;84(3):417-28. doi: 10.1007/s00253-009-2107-4. Epub 2009 Jul 16.
6
Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin.
Microb Cell Fact. 2011 Oct 18;10:82. doi: 10.1186/1475-2859-10-82.
7
Teicoplanin biosynthesis genes in Actinoplanes teichomyceticus.
Antonie Van Leeuwenhoek. 2000 Dec;78(3-4):379-84. doi: 10.1023/a:1010239717396.
8
Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus.
Microbiology (Reading). 2004 Jan;150(Pt 1):95-102. doi: 10.1099/mic.0.26507-0.
9
Application of conjugation using phiC31 att/int system for Actinoplanes teichomyceticus, a producer of teicoplanin.
Biotechnol Lett. 2008 Jul;30(7):1233-8. doi: 10.1007/s10529-008-9671-z. Epub 2008 Mar 4.
10
Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11250-4. doi: 10.1073/pnas.1006085107. Epub 2010 Jun 7.

引用本文的文献

2
Recent advances in natural products exploitation in via synthetic biology.
Eng Life Sci. 2019 Mar 12;19(6):452-462. doi: 10.1002/elsc.201800137. eCollection 2019 Jun.
3
Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds.
Front Microbiol. 2017 Jun 15;8:1106. doi: 10.3389/fmicb.2017.01106. eCollection 2017.
4
Engineering microbial hosts for production of bacterial natural products.
Nat Prod Rep. 2016 Aug 27;33(8):963-87. doi: 10.1039/c6np00017g. Epub 2016 Apr 13.
5
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes.
J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):343-70. doi: 10.1007/s10295-015-1682-x. Epub 2015 Sep 12.
6
The adpA-like regulatory gene from Actinoplanes teichomyceticus: in silico analysis and heterologous expression.
World J Microbiol Biotechnol. 2015 Aug;31(8):1297-301. doi: 10.1007/s11274-015-1882-6. Epub 2015 Jun 4.
7
Bacterial sigma factors as targets for engineered or synthetic transcriptional control.
Front Bioeng Biotechnol. 2014 Sep 3;2:33. doi: 10.3389/fbioe.2014.00033. eCollection 2014.

本文引用的文献

2
Manipulating the regulatory genes for teicoplanin production in Actinoplanes teichomyceticus.
World J Microbiol Biotechnol. 2012 May;28(5):2095-100. doi: 10.1007/s11274-012-1013-6. Epub 2012 Feb 10.
3
Teicoplanin therapy leading to a significant decrease in viral load in a patient with chronic hepatitis C.
J Antimicrob Chemother. 2012 Oct;67(10):2537-8. doi: 10.1093/jac/dks217. Epub 2012 Jun 11.
4
Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance.
Biotechnol Bioeng. 2012 May;109(5):1165-72. doi: 10.1002/bit.24411. Epub 2011 Dec 27.
5
Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin.
Microb Cell Fact. 2011 Oct 18;10:82. doi: 10.1186/1475-2859-10-82.
8
Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11250-4. doi: 10.1073/pnas.1006085107. Epub 2010 Jun 7.
9
Identification of avermectin-high-producing strains by high-throughput screening methods.
Appl Microbiol Biotechnol. 2010 Jan;85(4):1219-25. doi: 10.1007/s00253-009-2345-5. Epub 2009 Dec 2.
10
Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes.
Appl Environ Microbiol. 2009 May;75(9):2705-11. doi: 10.1128/AEM.01888-08. Epub 2009 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验