Suppr超能文献

基于块回归的磁共振图像合成

MAGNETIC RESONANCE IMAGE SYNTHESIS THROUGH PATCH REGRESSION.

作者信息

Jog Amod, Roy Snehashis, Carass Aaron, Prince Jerry L

机构信息

Dept. of Computer Science, The Johns Hopkins University.

Dept. of Electrical and Computer Engineering, The Johns Hopkins University.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:350-353. doi: 10.1109/ISBI.2013.6556484.

Abstract

Magnetic resonance imaging (MRI) is widely used for analyzing human brain structure and function. MRI is extremely versatile and can produce different tissue contrasts as required by the study design. For reasons such as patient comfort, cost, and improving technology, certain tissue contrasts for a cohort analysis may not have been acquired during the imaging session. This missing pulse sequence hampers consistent neuroanatomy research. One possible solution is to synthesize the missing sequence. This paper proposes a data-driven approach to image synthesis, which provides equal, if not superior synthesis compared to the state-of-the-art, in addition to being an order of magnitude faster. The synthesis transformation is done on image patches by a trained bagged ensemble of regression trees. Validation was done by synthesizing -weighted contrasts from -weighted scans, for phantoms and real data. We also synthesized 3 Tesla -weighted magnetization prepared rapid gradient echo (MPRAGE) images from 1.5 Tesla MPRAGEs to demonstrate the generality of this approach.

摘要

磁共振成像(MRI)被广泛用于分析人类大脑的结构和功能。MRI具有极强的通用性,能够根据研究设计的要求产生不同的组织对比度。由于患者舒适度、成本以及技术改进等原因,在成像过程中可能未获取用于队列分析的某些组织对比度。这种缺失的脉冲序列阻碍了连贯的神经解剖学研究。一种可能的解决方案是合成缺失的序列。本文提出了一种数据驱动的图像合成方法,该方法除了速度快一个数量级之外,与当前最先进的方法相比,能提供同等甚至更优的合成效果。合成变换是通过训练好的袋装回归树集成在图像块上完成的。通过为体模和真实数据合成来自加权扫描的加权对比度进行验证。我们还从1.5特斯拉的MPRAGE图像合成了3特斯拉的加权磁化准备快速梯度回波(MPRAGE)图像,以证明该方法的通用性。

相似文献

1
MAGNETIC RESONANCE IMAGE SYNTHESIS THROUGH PATCH REGRESSION.
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:350-353. doi: 10.1109/ISBI.2013.6556484.
2
Patch Based Synthesis of Whole Head MR Images: Application to EPI Distortion Correction.
Simul Synth Med Imaging. 2016 Oct;9968:146-156. doi: 10.1007/978-3-319-46630-9_15. Epub 2016 Sep 23.
3
Synthesizing T1 weighted MPRAGE image from multi echo GRE images via deep neural network.
Magn Reson Imaging. 2019 Dec;64:13-20. doi: 10.1016/j.mri.2019.04.002. Epub 2019 Apr 4.
5
IMPROVING MAGNETIC RESONANCE RESOLUTION WITH SUPERVISED LEARNING.
Proc IEEE Int Symp Biomed Imaging. 2014;2014:987-990. doi: 10.1109/ISBI.2014.6868038.
6
Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study.
MAGMA. 2016 Jun;29(3):389-98. doi: 10.1007/s10334-016-0548-1. Epub 2016 Mar 30.
9
Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
Int J Radiat Oncol Biol Phys. 2020 Dec 1;108(5):1292-1303. doi: 10.1016/j.ijrobp.2020.06.076. Epub 2020 Jul 4.
10
1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.
PLoS One. 2017 Nov 10;12(11):e0187528. doi: 10.1371/journal.pone.0187528. eCollection 2017.

引用本文的文献

1
One Model to Synthesize Them All: Multi-Contrast Multi-Scale Transformer for Missing Data Imputation.
IEEE Trans Med Imaging. 2023 Sep;42(9):2577-2591. doi: 10.1109/TMI.2023.3261707. Epub 2023 Aug 31.
2
A LAG FUNCTIONAL LINEAR MODEL FOR PREDICTION OF MAGNETIZATION TRANSFER RATIO IN MULTIPLE SCLEROSIS LESIONS.
Ann Appl Stat. 2016 Dec;10(4):2325-2348. doi: 10.1214/16-aoas981. Epub 2017 Jan 5.
3
PTNet3D: A 3D High-Resolution Longitudinal Infant Brain MRI Synthesizer Based on Transformers.
IEEE Trans Med Imaging. 2022 Oct;41(10):2925-2940. doi: 10.1109/TMI.2022.3174827. Epub 2022 Sep 30.
4
Disease-Image-Specific Learning for Diagnosis-Oriented Neuroimage Synthesis With Incomplete Multi-Modality Data.
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6839-6853. doi: 10.1109/TPAMI.2021.3091214. Epub 2022 Sep 15.
5
T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks.
Rep Pract Oncol Radiother. 2021 Feb 25;26(1):35-42. doi: 10.5603/RPOR.a2021.0005. eCollection 2021.
6
DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis.
Inf Fusion. 2021 Mar;67:147-160. doi: 10.1016/j.inffus.2020.10.015.
7
Multimodal MRI synthesis using unified generative adversarial networks.
Med Phys. 2020 Dec;47(12):6343-6354. doi: 10.1002/mp.14539. Epub 2020 Oct 27.
8
MRI Cross-Modality Image-to-Image Translation.
Sci Rep. 2020 Feb 28;10(1):3753. doi: 10.1038/s41598-020-60520-6.
9
Synthesized b0 for diffusion distortion correction (Synb0-DisCo).
Magn Reson Imaging. 2019 Dec;64:62-70. doi: 10.1016/j.mri.2019.05.008. Epub 2019 May 7.

本文引用的文献

1
Atlas-free surface reconstruction of the cortical grey-white interface in infants.
PLoS One. 2011;6(11):e27128. doi: 10.1371/journal.pone.0027128. Epub 2011 Nov 16.
2
A compressed sensing approach for MR tissue contrast synthesis.
Inf Process Med Imaging. 2011;22:371-83. doi: 10.1007/978-3-642-22092-0_31.
3
Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images.
Neuroimage. 2011 Jul 15;57(2):378-90. doi: 10.1016/j.neuroimage.2011.03.080. Epub 2011 Apr 8.
4
Multi-parametric neuroimaging reproducibility: a 3-T resource study.
Neuroimage. 2011 Feb 14;54(4):2854-66. doi: 10.1016/j.neuroimage.2010.11.047. Epub 2010 Nov 20.
7
Test-retest and between-site reliability in a multicenter fMRI study.
Hum Brain Mapp. 2008 Aug;29(8):958-72. doi: 10.1002/hbm.20440.
8
MRI simulation-based evaluation of image-processing and classification methods.
IEEE Trans Med Imaging. 1999 Nov;18(11):1085-97. doi: 10.1109/42.816072.
9
Mathematical textbook of deformable neuroanatomies.
Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11944-8. doi: 10.1073/pnas.90.24.11944.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验