Suppr超能文献

天然产物构象能量的机器学习估计

Machine learning estimates of natural product conformational energies.

作者信息

Rupp Matthias, Bauer Matthias R, Wilcken Rainer, Lange Andreas, Reutlinger Michael, Boeckler Frank M, Schneider Gisbert

机构信息

Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.

Department of Pharmaceutical Chemistry, Eberhard Karls University, Tübingen, Germany.

出版信息

PLoS Comput Biol. 2014 Jan;10(1):e1003400. doi: 10.1371/journal.pcbi.1003400. Epub 2014 Jan 16.

Abstract

Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.

摘要

机器学习已被用于估计势能面,以加速小系统的分子动力学模拟。我们证明,以来自粘细菌Geophyra archangium的天然产物阿奇佐利德A(一种液泡型ATP酶的有效抑制剂)为例,这种方法对于明显更大、结构复杂的分子是可行的。我们的模型通过高斯过程回归利用先前计算的信息来估计新构象的能量。预测方差用于评估构象是否处于插值区域,从而在预测准确性和计算加速之间实现可控的权衡。对于密度泛函理论水平(隐式溶剂,DFT/BLYP-disp3/def2-TZVP)下松弛构象的能量,实现了小于1 kcal/mol的平均绝对误差。该研究表明,可以为结构复杂、具有药物相关性的化合物开发预测性机器学习模型,这可能会在更大分子结构的模拟中实现显著加速。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/795c/3894151/8e2622e67d69/pcbi.1003400.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验