Suppr超能文献

使用双能X线吸收法通过生物电阻抗和人体测量学预测3岁儿童的去脂体重。

Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA.

作者信息

Ejlerskov Katrine T, Jensen Signe M, Christensen Line B, Ritz Christian, Michaelsen Kim F, Mølgaard Christian

机构信息

Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark (KTE, SMJ, LBC, CR, KFM, CM).

出版信息

Sci Rep. 2014 Jan 27;4:3889. doi: 10.1038/srep03889.

Abstract

For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height(2)/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity.

摘要

对于3岁儿童而言,估算身体成分的合适方法很少。我们旨在利用双能X线吸收法(DXA)作为参考方法,根据99名健康丹麦3岁儿童的数据,开发通过生物电阻抗分析(BIA)和人体测量学估算去脂体重(FFM)的预测方程。预测方程源自两个多元线性回归模型,一个综合模型(身高²/电阻(RI),六项人体测量指标)和一个简单模型(RI、身高、体重)。通过10倍交叉验证法对其不确定性进行了量化。两个方程的FFM预测误差均为3.0%(均方根误差分别为360克和356克)。所推导的方程得出基于BIA的FFM和脂肪量(FM)预测值,接近DXA扫描结果。我们建议,这些预测方程可应用于2至4岁的类似人群样本。所推导的方程可能对将身体成分与早期风险因素及肥胖症早期发病相关联的研究有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf1/3902432/d33e28126148/srep03889-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验