Suppr超能文献

O 多糖对铜绿假单胞菌 PAO1 生物膜形成和外膜囊泡生物发生的影响。

Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1.

机构信息

Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.

出版信息

J Bacteriol. 2014 Apr;196(7):1306-17. doi: 10.1128/JB.01463-13. Epub 2014 Jan 24.

Abstract

Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to contribute to the development and fitness of these bacterial communities. The goal of this study was to examine the relationships between changes in the cell surface expression of LPS O polysaccharides, biofilm development, and OMV biogenesis in P. aeruginosa. We compared wild-type P. aeruginosa PAO1 with three chromosomal knockouts. These knockouts have deletions in the rmd, wbpM, and wbpL genes that produce changes in the expression of common polysaccharide antigen (CPA), O-specific antigen (OSA), or both. Our results demonstrate that changes in O polysaccharide expression do not significantly influence OMV production but do affect the size and protein content of OMVs derived from both CPA(-) and OSA(-) cells; these mutant cells also exhibited different physical properties from wild-type cells. We further examined biofilm growth of the mutants and determined that CPA(-) cells could not develop into robust biofilms and exhibit changes in cell morphology and biofilm matrix production. Together these results demonstrate the importance of O polysaccharide expression on P. aeruginosa OMV composition and highlight the significance of CPA expression in biofilm development.

摘要

铜绿假单胞菌是一种常见的机会性人类病原体,其特点是能够在感染过程中适应环境变化。这些适应包括细胞表面脂多糖(LPS)表达、生物膜形成和保护性细胞外多糖基质的产生的变化。已鉴定出外膜囊泡(OMV)是铜绿假单胞菌生物膜细胞外基质的重要组成部分,并被认为有助于这些细菌群落的发展和适应性。本研究的目的是研究 LPS O 多糖的细胞表面表达变化、生物膜形成和铜绿假单胞菌 OMV 生物发生之间的关系。我们比较了野生型铜绿假单胞菌 PAO1 和三个染色体敲除菌株。这些敲除菌株在 rmd、wbpM 和 wbpL 基因中缺失,导致常见多糖抗原(CPA)、O 特异性抗原(OSA)或两者的表达发生变化。我们的结果表明,O 多糖表达的变化不会显著影响 OMV 的产生,但会影响源自 CPA(-)和 OSA(-)细胞的 OMV 的大小和蛋白质含量;这些突变细胞还表现出与野生型细胞不同的物理特性。我们进一步研究了突变体的生物膜生长,并确定 CPA(-)细胞不能形成健壮的生物膜,并且表现出细胞形态和生物膜基质产生的变化。这些结果共同表明 O 多糖表达对铜绿假单胞菌 OMV 组成的重要性,并强调了 CPA 表达在生物膜形成中的重要性。

相似文献

1
2
3
Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.
J Proteome Res. 2015 Nov 6;14(11):4524-37. doi: 10.1021/acs.jproteome.5b00262. Epub 2015 Oct 2.
5
Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis.
PLoS One. 2019 Feb 14;14(2):e0212275. doi: 10.1371/journal.pone.0212275. eCollection 2019.
9
Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix.
J Proteome Res. 2012 Oct 5;11(10):4906-15. doi: 10.1021/pr300395j. Epub 2012 Sep 26.

引用本文的文献

1
Cross-membrane cooperation among bacteria can facilitate intracellular pathogenesis.
Nat Commun. 2025 Aug 11;16(1):7419. doi: 10.1038/s41467-025-62575-3.
2
Pseudomonas aeruginosa biofilm: treatment strategies to combat infection.
Arch Microbiol. 2025 May 10;207(6):141. doi: 10.1007/s00203-025-04346-8.
4
Cross-membrane cooperation among bacteria can facilitate intracellular pathogenesis.
bioRxiv. 2025 Feb 9:2025.02.09.637186. doi: 10.1101/2025.02.09.637186.
7
Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens.
Appl Microbiol Biotechnol. 2024 Feb 24;108(1):232. doi: 10.1007/s00253-024-13033-5.
8
Identification of genes involved in enhanced membrane vesicle formation in biofilms: surface sensing facilitates vesiculation.
Front Microbiol. 2023 Dec 1;14:1252155. doi: 10.3389/fmicb.2023.1252155. eCollection 2023.
9
OprF functions as a latch to direct Outer Membrane Vesicle release in .
bioRxiv. 2023 Nov 12:2023.11.12.566662. doi: 10.1101/2023.11.12.566662.
10
Nutrient Limitation Sensitizes to Vancomycin.
ACS Infect Dis. 2023 Jul 14;9(7):1408-1423. doi: 10.1021/acsinfecdis.3c00167. Epub 2023 Jun 6.

本文引用的文献

1
Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa.
J Bacteriol. 2013 Jul;195(13):2971-81. doi: 10.1128/JB.02267-12. Epub 2013 Apr 26.
2
Pseudomonas aeruginosa: new insights into pathogenesis and host defenses.
Pathog Dis. 2013 Apr;67(3):159-73. doi: 10.1111/2049-632X.12033. Epub 2013 Mar 15.
4
Quantitative and qualitative preparations of bacterial outer membrane vesicles.
Methods Mol Biol. 2013;966:259-72. doi: 10.1007/978-1-62703-245-2_16.
5
Role of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation.
J Bacteriol. 2013 Jan;195(2):213-9. doi: 10.1128/JB.01253-12. Epub 2012 Nov 2.
6
Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix.
J Proteome Res. 2012 Oct 5;11(10):4906-15. doi: 10.1021/pr300395j. Epub 2012 Sep 26.
7
Contribution of bacterial outer membrane vesicles to innate bacterial defense.
BMC Microbiol. 2011 Dec 1;11:258. doi: 10.1186/1471-2180-11-258.
8
Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa.
Proteomics. 2011 Aug;11(16):3424-9. doi: 10.1002/pmic.201000212.
9
Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide.
Front Microbiol. 2011 Jun 1;2:118. doi: 10.3389/fmicb.2011.00118. eCollection 2011.
10
Selective sorting of cargo proteins into bacterial membrane vesicles.
J Biol Chem. 2011 Jan 14;286(2):1269-76. doi: 10.1074/jbc.M110.185744. Epub 2010 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验