Suppr超能文献

从大规模开放实验室中获得的 RNA 设计规则。

RNA design rules from a massive open laboratory.

机构信息

Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15206.

出版信息

Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2122-7. doi: 10.1073/pnas.1313039111. Epub 2014 Jan 27.

Abstract

Self-assembling RNA molecules present compelling substrates for the rational interrogation and control of living systems. However, imperfect in silico models--even at the secondary structure level--hinder the design of new RNAs that function properly when synthesized. Here, we present a unique and potentially general approach to such empirical problems: the Massive Open Laboratory. The EteRNA project connects 37,000 enthusiasts to RNA design puzzles through an online interface. Uniquely, EteRNA participants not only manipulate simulated molecules but also control a remote experimental pipeline for high-throughput RNA synthesis and structure mapping. We show herein that the EteRNA community leveraged dozens of cycles of continuous wet laboratory feedback to learn strategies for solving in vitro RNA design problems on which automated methods fail. The top strategies--including several previously unrecognized negative design rules--were distilled by machine learning into an algorithm, EteRNABot. Over a rigorous 1-y testing phase, both the EteRNA community and EteRNABot significantly outperformed prior algorithms in a dozen RNA secondary structure design tests, including the creation of dendrimer-like structures and scaffolds for small molecule sensors. These results show that an online community can carry out large-scale experiments, hypothesis generation, and algorithm design to create practical advances in empirical science.

摘要

自组装 RNA 分子为合理探究和控制生命系统提供了极具吸引力的底物。然而,即使在二级结构水平上,不完善的计算模型也会阻碍新 RNA 的设计,使其在合成后能够正常发挥功能。在这里,我们提出了一种独特的、可能具有普遍意义的方法来解决此类经验问题:大规模开放实验室。EteRNA 项目通过在线界面将 37000 名爱好者与 RNA 设计难题联系起来。独特的是,EteRNA 的参与者不仅可以操作模拟分子,还可以控制远程实验管道,以实现高通量 RNA 合成和结构映射。我们在此表明,EteRNA 社区利用数十个周期的连续湿实验室反馈,学习解决自动化方法失败的体外 RNA 设计问题的策略。通过机器学习,这些顶级策略(包括几个以前未被识别的负设计规则)被提炼成一个算法,即 EteRNABot。在严格的 1 年测试阶段,EteRNA 社区和 EteRNABot 在十几个 RNA 二级结构设计测试中都显著优于以前的算法,包括树枝状结构的创建和小分子传感器的支架。这些结果表明,在线社区可以进行大规模实验、假设生成和算法设计,从而在经验科学中取得实际进展。

相似文献

1
RNA design rules from a massive open laboratory.从大规模开放实验室中获得的 RNA 设计规则。
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2122-7. doi: 10.1073/pnas.1313039111. Epub 2014 Jan 27.
3
Principles for Predicting RNA Secondary Structure Design Difficulty.预测RNA二级结构设计难度的原则。
J Mol Biol. 2016 Feb 27;428(5 Pt A):748-757. doi: 10.1016/j.jmb.2015.11.013. Epub 2016 Feb 17.
4
Scientific rigor through videogames.通过电子游戏实现科学严谨性。
Trends Biochem Sci. 2014 Nov;39(11):507-9. doi: 10.1016/j.tibs.2014.08.005. Epub 2014 Oct 6.
6
Solving the RNA design problem with reinforcement learning.利用强化学习解决 RNA 设计问题。
PLoS Comput Biol. 2018 Jun 21;14(6):e1006176. doi: 10.1371/journal.pcbi.1006176. eCollection 2018 Jun.
10
A new algorithm for RNA secondary structure design.一种用于RNA二级结构设计的新算法。
J Mol Biol. 2004 Feb 20;336(3):607-24. doi: 10.1016/j.jmb.2003.12.041.

引用本文的文献

4
Physics-based modeling in the new era of enzyme engineering.酶工程新时代基于物理学的建模
Nat Comput Sci. 2025 Apr;5(4):279-291. doi: 10.1038/s43588-025-00788-8. Epub 2025 Apr 24.
6
Defining quantum games.定义量子博弈。
EPJ Quantum Technol. 2025;12(1):7. doi: 10.1140/epjqt/s40507-025-00308-7. Epub 2025 Jan 22.

本文引用的文献

5
Squaring theory with practice in RNA design.在 RNA 设计中使理论与实践保持一致。
Curr Opin Struct Biol. 2012 Aug;22(4):457-66. doi: 10.1016/j.sbi.2012.06.003. Epub 2012 Jul 23.
8
Algorithm discovery by protein folding game players.通过蛋白质折叠游戏玩家发现算法。
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18949-53. doi: 10.1073/pnas.1115898108. Epub 2011 Nov 7.
9
Understanding the errors of SHAPE-directed RNA structure modeling.理解 SHAPE 指导的 RNA 结构建模中的错误。
Biochemistry. 2011 Sep 20;50(37):8049-56. doi: 10.1021/bi200524n. Epub 2011 Aug 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验