Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15206.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2122-7. doi: 10.1073/pnas.1313039111. Epub 2014 Jan 27.
Self-assembling RNA molecules present compelling substrates for the rational interrogation and control of living systems. However, imperfect in silico models--even at the secondary structure level--hinder the design of new RNAs that function properly when synthesized. Here, we present a unique and potentially general approach to such empirical problems: the Massive Open Laboratory. The EteRNA project connects 37,000 enthusiasts to RNA design puzzles through an online interface. Uniquely, EteRNA participants not only manipulate simulated molecules but also control a remote experimental pipeline for high-throughput RNA synthesis and structure mapping. We show herein that the EteRNA community leveraged dozens of cycles of continuous wet laboratory feedback to learn strategies for solving in vitro RNA design problems on which automated methods fail. The top strategies--including several previously unrecognized negative design rules--were distilled by machine learning into an algorithm, EteRNABot. Over a rigorous 1-y testing phase, both the EteRNA community and EteRNABot significantly outperformed prior algorithms in a dozen RNA secondary structure design tests, including the creation of dendrimer-like structures and scaffolds for small molecule sensors. These results show that an online community can carry out large-scale experiments, hypothesis generation, and algorithm design to create practical advances in empirical science.
自组装 RNA 分子为合理探究和控制生命系统提供了极具吸引力的底物。然而,即使在二级结构水平上,不完善的计算模型也会阻碍新 RNA 的设计,使其在合成后能够正常发挥功能。在这里,我们提出了一种独特的、可能具有普遍意义的方法来解决此类经验问题:大规模开放实验室。EteRNA 项目通过在线界面将 37000 名爱好者与 RNA 设计难题联系起来。独特的是,EteRNA 的参与者不仅可以操作模拟分子,还可以控制远程实验管道,以实现高通量 RNA 合成和结构映射。我们在此表明,EteRNA 社区利用数十个周期的连续湿实验室反馈,学习解决自动化方法失败的体外 RNA 设计问题的策略。通过机器学习,这些顶级策略(包括几个以前未被识别的负设计规则)被提炼成一个算法,即 EteRNABot。在严格的 1 年测试阶段,EteRNA 社区和 EteRNABot 在十几个 RNA 二级结构设计测试中都显著优于以前的算法,包括树枝状结构的创建和小分子传感器的支架。这些结果表明,在线社区可以进行大规模实验、假设生成和算法设计,从而在经验科学中取得实际进展。