Suppr超能文献

多维纹理特征分析:基于磁共振波谱(MRS)和磁共振成像(MRI)的脑肿瘤组织分析

Multidimensional texture characterization: on analysis for brain tumor tissues using MRS and MRI.

作者信息

Nachimuthu Deepa Subramaniam, Baladhandapani Arunadevi

机构信息

Department of EEE, Anna University - Regional Centre Coimbatore, Jothipuram, Coimbatore, 641047, India,

出版信息

J Digit Imaging. 2014 Aug;27(4):496-506. doi: 10.1007/s10278-013-9669-5.

Abstract

This paper investigates the efficacy of automated pattern recognition methods on magnetic resonance data with the objective of assisting radiologists in the clinical diagnosis of brain tissue tumors. In this paper, the sciences of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are combined to improve the accuracy of the classifier, based on the multidimensional co-occurrence matrices to assess the detection of pathological tissues (tumor and edema), normal tissues (white matter - WM and gray matter - GM), and fluid (cerebrospinal fluid - CSF). The results show the ability of the classifier with iterative training to automatically and simultaneously recover tissue-specific spectral and structural patterns and achieve segmentation of tumor and edema and grading of high and low glioma tumor. Here, extreme learning machine - improved particle swarm optimization (ELM-IPSO) neural network classifier is trained with the feature descriptions in brain magnetic resonance (MR) spectra. This has the characteristics of varying the normal spectral pattern associated with tumor patterns along with imaging features. Validation was performed considering 35 clinical studies. The volumetric features extracted from the vectors of this matrix articulate some important elementary structures, which along with spectroscopic metabolite ratios discriminate the tumor grades and tissue classes. The quantitative 3D analysis reveals significant improvement in terms of global accuracy rate for automatic classification in brain tissues and discriminating pathological tumor tissue from structural healthy brain tissue.

摘要

本文研究自动模式识别方法对磁共振数据的有效性,目的是协助放射科医生对脑组织肿瘤进行临床诊断。本文将磁共振成像(MRI)和磁共振波谱(MRS)科学相结合,基于多维共生矩阵来评估病理组织(肿瘤和水肿)、正常组织(白质-WM和灰质-GM)以及液体(脑脊液-CSF)的检测情况,以提高分类器的准确性。结果表明,经过迭代训练的分类器能够自动且同时恢复组织特异性的光谱和结构模式,并实现肿瘤和水肿的分割以及高低级别胶质瘤肿瘤的分级。在此,使用脑磁共振(MR)光谱中的特征描述来训练极限学习机改进粒子群优化(ELM-IPSO)神经网络分类器。这具有随着成像特征改变与肿瘤模式相关的正常光谱模式的特点。考虑了35项临床研究进行验证。从该矩阵的向量中提取的体积特征清晰地显示了一些重要的基本结构,这些结构与光谱代谢物比率一起区分肿瘤级别和组织类别。定量三维分析表明,在脑组织自动分类以及区分病理肿瘤组织与结构健康脑组织方面,整体准确率有显著提高。

相似文献

1
Multidimensional texture characterization: on analysis for brain tumor tissues using MRS and MRI.
J Digit Imaging. 2014 Aug;27(4):496-506. doi: 10.1007/s10278-013-9669-5.
3
Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy.
Neuroradiol J. 2015 Apr;28(2):106-11. doi: 10.1177/1971400915576637. Epub 2015 Apr 28.
5
A magnetic resonance spectroscopy driven initialization scheme for active shape model based prostate segmentation.
Med Image Anal. 2011 Apr;15(2):214-25. doi: 10.1016/j.media.2010.09.002. Epub 2010 Oct 28.
7
Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1451-8. doi: 10.1109/JBHI.2014.2360515. Epub 2014 Sep 26.

引用本文的文献

2
Promoting the application of pediatric radiomics via an integrated medical engineering approach.
Cancer Innov. 2023 Feb 19;2(4):302-311. doi: 10.1002/cai2.44. eCollection 2023 Aug.
4
5
Multiparametric Quantitative Imaging Biomarker as a Multivariate Descriptor of Health: A Roadmap.
Acad Radiol. 2023 Feb;30(2):159-182. doi: 10.1016/j.acra.2022.10.026. Epub 2022 Dec 1.
7
Texture analysis of early cerebral tissue damage in magnetic resonance imaging of patients with lung cancer.
Oncol Lett. 2020 Apr;19(4):3089-3100. doi: 10.3892/ol.2020.11426. Epub 2020 Mar 3.
8
Machine learning studies on major brain diseases: 5-year trends of 2014-2018.
Jpn J Radiol. 2019 Jan;37(1):34-72. doi: 10.1007/s11604-018-0794-4. Epub 2018 Nov 29.
9
Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics.
J Neurooncol. 2018 Sep;139(3):633-642. doi: 10.1007/s11060-018-2908-3. Epub 2018 Jun 2.
10

本文引用的文献

1
Extracting MRS discriminant functional features of brain tumors.
NMR Biomed. 2013 May;26(5):578-92. doi: 10.1002/nbm.2895. Epub 2012 Dec 12.
3
Guidelines on management of low-grade gliomas: report of an EFNS-EANO Task Force.
Eur J Neurol. 2010 Sep;17(9):1124-1133. doi: 10.1111/j.1468-1331.2010.03151.x.
4
In vivo proton magnetic resonance spectroscopy of intraventricular tumours of the brain.
Eur Radiol. 2009 Aug;19(8):2049-59. doi: 10.1007/s00330-009-1357-y. Epub 2009 Mar 11.
5
Nosologic imaging of the brain: segmentation and classification using MRI and MRSI.
NMR Biomed. 2009 May;22(4):374-90. doi: 10.1002/nbm.1347.
6
A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection.
Artif Intell Med. 2007 Jun;40(2):87-102. doi: 10.1016/j.artmed.2007.02.002. Epub 2007 Apr 26.
9
Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas.
Magn Reson Imaging. 2003 Nov;21(9):983-7. doi: 10.1016/s0730-725x(03)00201-7.
10
Detection of structural differences between the brains of schizophrenic patients and controls.
Psychiatry Res. 2003 Nov 30;124(3):177-89. doi: 10.1016/s0925-4927(03)00070-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验