Suppr超能文献

梯度微流控技术可实现快速的细菌生长抑制测试。

Gradient microfluidics enables rapid bacterial growth inhibition testing.

作者信息

Li Bing, Qiu Yong, Glidle Andrew, McIlvenna David, Luo Qian, Cooper Jon, Shi Han-Chang, Yin Huabing

机构信息

Environmental Simulation and Pollution Control State-Key Joint Laboratory, School of Environment, Tsinghua University , Beijing 100084, China.

出版信息

Anal Chem. 2014 Mar 18;86(6):3131-7. doi: 10.1021/ac5001306. Epub 2014 Mar 3.

Abstract

Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).

摘要

细菌生长抑制试验已成为衡量抑制剂在广泛应用中的不良影响的标准方法,例如在医学和环境科学中的毒性测试。然而,这些测试的传统微孔板形式操作繁琐且提供的信息有限(通常仅限于终点测定)。在本研究中,我们开发了一种微流控系统,能够在单个实验中快速定量抑制剂对细菌生长和存活的影响。这种形式具有独特的优势组合,包括长期连续流动培养、浓度梯度生成和单细胞形态跟踪。以大肠杆菌和抑制剂阿莫西林作为一个模型系统,我们展示了基于芯片的单细胞测定与传统方法之间在获得抗生素抑制定量测量(例如最低抑菌浓度)方面的高度一致性。此外,我们表明我们的方法能够提供超出标准微孔板测定的额外信息,包括生长抑制的动力学信息以及在广泛的抑制剂浓度范围内细菌形态动力学的测量。最后,使用第二个模型系统,我们表明这种基于芯片的系统不需要对细菌进行标记,非常适合研究天然存在的物种。我们以欧洲亚硝化单胞菌(一种对环境重要的细菌)为例进行说明,并表明芯片系统可以显著缩短生长和抑制测量所需的时间(<4天,相比在培养瓶中需要数周)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50c8/3988682/c4b6b7cce48d/ac-2014-001306_0001.jpg

相似文献

1
Gradient microfluidics enables rapid bacterial growth inhibition testing.
Anal Chem. 2014 Mar 18;86(6):3131-7. doi: 10.1021/ac5001306. Epub 2014 Mar 3.
3
Nanofluidic Immobilization and Growth Detection of in a Chip for Antibiotic Susceptibility Testing.
Biosensors (Basel). 2020 Sep 25;10(10):135. doi: 10.3390/bios10100135.
4
A Novel Microfluidic Assay for Rapid Phenotypic Antibiotic Susceptibility Testing of Bacteria Detected in Clinical Blood Cultures.
PLoS One. 2016 Dec 14;11(12):e0167356. doi: 10.1371/journal.pone.0167356. eCollection 2016.
5
A Microfluidic Chip for Studies of the Dynamics of Antibiotic Resistance Selection in Bacterial Biofilms.
Front Cell Infect Microbiol. 2022 May 10;12:896149. doi: 10.3389/fcimb.2022.896149. eCollection 2022.
6
Rapid identification of antibiotic resistance using droplet microfluidics.
Bioengineered. 2016 Apr 2;7(2):79-87. doi: 10.1080/21655979.2016.1156824. Epub 2016 Mar 4.
7
9
A Multiplex Fluidic Chip for Rapid Phenotypic Antibiotic Susceptibility Testing.
mBio. 2020 Feb 25;11(1):e03109-19. doi: 10.1128/mBio.03109-19.
10
Identification and Antimicrobial Susceptibility Testing of Using a Microfluidic Lab-on-a-Chip Device.
Appl Environ Microbiol. 2020 Apr 17;86(9). doi: 10.1128/AEM.00096-20.

引用本文的文献

1
Microfluidic Array Enables Rapid Testing of Natural Compounds Against .
Plants (Basel). 2025 Mar 11;14(6):872. doi: 10.3390/plants14060872.
2
Single-cell pathogen diagnostics for combating antibiotic resistance.
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-022-00190-y. Epub 2023 Feb 2.
3
Microfluidic technologies for advanced antimicrobial susceptibility testing.
Biomicrofluidics. 2024 Jun 7;18(3):031504. doi: 10.1063/5.0190112. eCollection 2024 May.
4
Microfluidics for adaptation of microorganisms to stress: design and application.
Appl Microbiol Biotechnol. 2024 Jan 22;108(1):162. doi: 10.1007/s00253-024-13011-x.
5
The Spatial-Temporal Effects of Bacterial Growth Substrates on Antibiotic Resistance Gene Spread in the Biofilm.
Antibiotics (Basel). 2023 Jul 6;12(7):1154. doi: 10.3390/antibiotics12071154.
6
Characterization of Hsp17, a Novel Small Heat Shock Protein, in Sphingomonas melonis TY under Heat Stress.
Microbiol Spectr. 2023 Aug 17;11(4):e0136023. doi: 10.1128/spectrum.01360-23. Epub 2023 Jul 12.
7
Molecular responses during bacterial filamentation reveal inhibition methods of drug-resistant bacteria.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2301170120. doi: 10.1073/pnas.2301170120. Epub 2023 Jun 26.
8
Density fluctuations, homeostasis, and reproduction effects in bacteria.
Commun Biol. 2022 Apr 28;5(1):397. doi: 10.1038/s42003-022-03348-2.
10
Microfluidic Systems for Antimicrobial Susceptibility Testing.
Adv Biochem Eng Biotechnol. 2022;179:291-309. doi: 10.1007/10_2021_164.

本文引用的文献

1
Microfluidic chemostat for measuring single cell dynamics in bacteria.
Lab Chip. 2013 Mar 7;13(5):947-54. doi: 10.1039/c2lc41196b. Epub 2013 Jan 18.
2
Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system.
Lab Chip. 2013 Jan 21;13(2):280-7. doi: 10.1039/c2lc41055a. Epub 2012 Nov 21.
3
Distinct single-cell morphological dynamics under beta-lactam antibiotics.
Mol Cell. 2012 Dec 14;48(5):705-12. doi: 10.1016/j.molcel.2012.09.016. Epub 2012 Oct 25.
4
Rapid screening of antibiotic toxicity in an automated microdroplet system.
Lab Chip. 2012 May 7;12(9):1629-37. doi: 10.1039/c2lc21284f. Epub 2012 Mar 16.
8
Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays.
Anal Chem. 2010 Nov 15;82(22):9401-9. doi: 10.1021/ac102022q. Epub 2010 Oct 27.
9
In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device.
Lab Chip. 2010 Dec 7;10(23):3296-9. doi: 10.1039/c0lc00154f. Epub 2010 Oct 11.
10
High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments.
Biosens Bioelectron. 2011 Jan 15;26(5):1993-9. doi: 10.1016/j.bios.2010.08.062. Epub 2010 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验