Suppr超能文献

一个近高速公路城区内超细颗粒物的逐时回归模型。

An hourly regression model for ultrafine particles in a near-highway urban area.

机构信息

Department of Civil and Environmental Engineering, School of Engineering, Tufts University , Medford, Massachusetts 02155, United States.

出版信息

Environ Sci Technol. 2014 Mar 18;48(6):3272-80. doi: 10.1021/es404838k. Epub 2014 Mar 6.

Abstract

Estimating ultrafine particle number concentrations (PNC) near highways for exposure assessment in chronic health studies requires models capable of capturing PNC spatial and temporal variations over the course of a full year. The objectives of this work were to describe the relationship between near-highway PNC and potential predictors, and to build and validate hourly log-linear regression models. PNC was measured near Interstate 93 (I-93) in Somerville, MA using a mobile monitoring platform driven for 234 h on 43 days between August 2009 and September 2010. Compared to urban background, PNC levels were consistently elevated within 100-200 m of I-93, with gradients impacted by meteorological and traffic conditions. Temporal and spatial variables including wind speed and direction, temperature, highway traffic, and distance to I-93 and major roads contributed significantly to the full regression model. Cross-validated model R(2) values ranged from 0.38 to 0.47, with higher values achieved (0.43 to 0.53) when short-duration PNC spikes were removed. The model predicts highest PNC near major roads and on cold days with low wind speeds. The model allows estimation of hourly ambient PNC at 20-m resolution in a near-highway neighborhood.

摘要

估算高速公路附近的超细颗粒物数浓度(PNC)以进行慢性健康研究中的暴露评估,需要能够捕捉整个一年中 PNC 时空变化的模型。本研究的目的是描述近高速公路 PNC 与潜在预测因子之间的关系,并建立和验证每小时对数线性回归模型。2009 年 8 月至 2010 年 9 月期间,在马萨诸塞州萨默维尔的 I-93 附近使用移动监测平台进行了 234 小时的监测,以测量近高速公路 PNC。与城市背景相比,在距 I-93 100-200 米范围内,PNC 水平持续升高,梯度受气象和交通条件的影响。风速和风向、温度、高速公路交通以及与 I-93 和主要道路的距离等时间和空间变量对全回归模型有显著贡献。交叉验证模型的 R(2)值范围为 0.38 至 0.47,当去除短时间 PNC 峰值时,R(2)值更高(0.43 至 0.53)。该模型预测主要道路附近和风速较低的寒冷天气下 PNC 最高。该模型允许在近高速公路区域以 20 米的分辨率估算每小时环境 PNC。

相似文献

1
An hourly regression model for ultrafine particles in a near-highway urban area.
Environ Sci Technol. 2014 Mar 18;48(6):3272-80. doi: 10.1021/es404838k. Epub 2014 Mar 6.
2
Assessing the Suitability of Multiple Dispersion and Land Use Regression Models for Urban Traffic-Related Ultrafine Particles.
Environ Sci Technol. 2017 Jan 3;51(1):384-392. doi: 10.1021/acs.est.6b04633. Epub 2016 Dec 14.
4
Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles.
J Expo Sci Environ Epidemiol. 2015 Sep-Oct;25(5):506-16. doi: 10.1038/jes.2015.11. Epub 2015 Apr 1.
5
Indoor and outdoor measurements of particle number concentration in near-highway homes.
J Expo Sci Environ Epidemiol. 2013 Sep-Oct;23(5):506-12. doi: 10.1038/jes.2012.116. Epub 2013 Jan 16.
7
Transferability and generalizability of regression models of ultrafine particles in urban neighborhoods in the Boston area.
Environ Sci Technol. 2015 May 19;49(10):6051-60. doi: 10.1021/es5061676. Epub 2015 Apr 30.
8
Short-term variation in near-highway air pollutant gradients on a winter morning.
Atmos Chem Phys. 2010;10(2):5599-5626. doi: 10.5194/acpd-10-5599-2010.
9
Association of Long-Term Near-Highway Exposure to Ultrafine Particles with Cardiovascular Diseases, Diabetes and Hypertension.
Int J Environ Res Public Health. 2017 Apr 26;14(5):461. doi: 10.3390/ijerph14050461.
10
Association of modeled long-term personal exposure to ultrafine particles with inflammatory and coagulation biomarkers.
Environ Int. 2016 Jul-Aug;92-93:173-82. doi: 10.1016/j.envint.2016.03.013. Epub 2016 Apr 20.

引用本文的文献

2
Relationship between traffic-related air pollution and inflammation biomarkers using structural equation modeling.
Sci Total Environ. 2023 Apr 20;870:161874. doi: 10.1016/j.scitotenv.2023.161874. Epub 2023 Jan 27.
3
Spatio-Temporal Variation-Induced Group Disparity of Intra-Urban NO Exposure.
Int J Environ Res Public Health. 2022 May 12;19(10):5872. doi: 10.3390/ijerph19105872.
5
Surrounding road density of child care centers in Australia.
Sci Data. 2022 Mar 31;9(1):140. doi: 10.1038/s41597-022-01172-1.
6
An exploratory analysis of sociodemographic characteristics with ultrafine particle concentrations in Boston, MA.
PLoS One. 2022 Mar 30;17(3):e0263434. doi: 10.1371/journal.pone.0263434. eCollection 2022.
8
9
A new exposure metric for the cumulative effect of short-term exposure peaks of traffic-related ultrafine particles.
J Expo Sci Environ Epidemiol. 2022 Jul;32(4):615-628. doi: 10.1038/s41370-021-00397-3. Epub 2021 Oct 19.
10
Spatial and Spatiotemporal Variability of Regional Background Ultrafine Particle Concentrations in the Netherlands.
Environ Sci Technol. 2021 Jan 19;55(2):1067-1075. doi: 10.1021/acs.est.0c06806. Epub 2020 Dec 30.

本文引用的文献

1
A Wide Area of Air Pollutant Impact Downwind of a Freeway during Pre-Sunrise Hours.
Atmos Environ (1994). 2009 May 1;43(16):2541-2549. doi: 10.1016/j.atmosenv.2009.02.033.
2
Modeling the concentrations of on-road air pollutants in southern California.
Environ Sci Technol. 2013 Aug 20;47(16):9291-9. doi: 10.1021/es401281r. Epub 2013 Jul 30.
3
Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors.
Atmos Environ (1994). 2012 Sep;57:257-265. doi: 10.1016/j.atmosenv.2012.04.004.
5
A land use regression model for ultrafine particles in Vancouver, Canada.
Environ Sci Technol. 2013 May 21;47(10):5217-25. doi: 10.1021/es304495s. Epub 2013 May 2.
7
Short-term variation in near-highway air pollutant gradients on a winter morning.
Atmos Chem Phys. 2010;10(2):5599-5626. doi: 10.5194/acpd-10-5599-2010.
9
Modeling spatial patterns of traffic-related air pollutants in complex urban terrain.
Environ Health Perspect. 2011 Jun;119(6):852-9. doi: 10.1289/ehp.1002519. Epub 2011 Jan 24.
10
Land use regression model for ultrafine particles in Amsterdam.
Environ Sci Technol. 2011 Jan 15;45(2):622-8. doi: 10.1021/es1023042. Epub 2010 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验