Suppr超能文献

创伤和受伤儿童死亡风险预测评分。

Risk prediction score for death of traumatised and injured children.

机构信息

Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand.

出版信息

BMC Pediatr. 2014 Feb 28;14:60. doi: 10.1186/1471-2431-14-60.

Abstract

BACKGROUND

Injury prediction scores facilitate the development of clinical management protocols to decrease mortality. However, most of the previously developed scores are limited in scope and are non-specific for use in children. We aimed to develop and validate a risk prediction model of death for injured and Traumatised Thai children.

METHODS

Our cross-sectional study included 43,516 injured children from 34 emergency services. A risk prediction model was derived using a logistic regression analysis that included 15 predictors. Model performance was assessed using the concordance statistic (C-statistic) and the observed per expected (O/E) ratio. Internal validation of the model was performed using a 200-repetition bootstrap analysis.

RESULTS

Death occurred in 1.7% of the injured children (95% confidence interval [95% CI]: 1.57-1.82). Ten predictors (i.e., age, airway intervention, physical injury mechanism, three injured body regions, the Glasgow Coma Scale, and three vital signs) were significantly associated with death. The C-statistic and the O/E ratio were 0.938 (95% CI: 0.929-0.947) and 0.86 (95% CI: 0.70-1.02), respectively. The scoring scheme classified three risk stratifications with respective likelihood ratios of 1.26 (95% CI: 1.25-1.27), 2.45 (95% CI: 2.42-2.52), and 4.72 (95% CI: 4.57-4.88) for low, intermediate, and high risks of death. Internal validation showed good model performance (C-statistic = 0.938, 95% CI: 0.926-0.952) and a small calibration bias of 0.002 (95% CI: 0.0005-0.003).

CONCLUSIONS

We developed a simplified Thai pediatric injury death prediction score with satisfactory calibrated and discriminative performance in emergency room settings.

摘要

背景

伤害预测评分有助于制定临床管理方案以降低死亡率。然而,以前开发的大多数评分范围有限,并且不适用于儿童。我们旨在开发和验证一种用于受伤和创伤泰国儿童死亡风险的预测模型。

方法

我们的横断面研究包括来自 34 个急救服务的 43516 名受伤儿童。使用逻辑回归分析得出风险预测模型,该模型包含 15 个预测因子。使用一致性统计量(C 统计量)和观察到的预期比(O/E 比)评估模型性能。使用 200 次重复自举分析对模型进行内部验证。

结果

受伤儿童中有 1.7%(95%置信区间 [95%CI]:1.57-1.82)死亡。10 个预测因子(即年龄、气道干预、物理损伤机制、三个受伤身体部位、格拉斯哥昏迷量表和三个生命体征)与死亡显着相关。C 统计量和 O/E 比分别为 0.938(95%CI:0.929-0.947)和 0.86(95%CI:0.70-1.02)。评分方案将三种风险分层分类,相应的似然比分别为 1.26(95%CI:1.25-1.27)、2.45(95%CI:2.42-2.52)和 4.72(95%CI:4.57-4.88),用于低、中、高死亡风险。内部验证显示模型性能良好(C 统计量=0.938,95%CI:0.926-0.952),校准偏差较小为 0.002(95%CI:0.0005-0.003)。

结论

我们开发了一种简化的泰国儿科伤害死亡预测评分,在急诊环境中具有令人满意的校准和区分性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cc/3939810/cf1dc1b77bbe/1471-2431-14-60-1.jpg

相似文献

1
Risk prediction score for death of traumatised and injured children.
BMC Pediatr. 2014 Feb 28;14:60. doi: 10.1186/1471-2431-14-60.
2
Development and validation of a breast cancer risk prediction model for Thai women: a cross-sectional study.
Asian Pac J Cancer Prev. 2014;15(16):6811-7. doi: 10.7314/apjcp.2014.15.16.6811.
3
Direct to operating room trauma resuscitation decreases mortality among severely injured children.
J Trauma Acute Care Surg. 2018 Oct;85(4):659-664. doi: 10.1097/TA.0000000000001908.
5
Norwegian survival prediction model in trauma: modelling effects of anatomic injury, acute physiology, age, and co-morbidity.
Acta Anaesthesiol Scand. 2014 Mar;58(3):303-15. doi: 10.1111/aas.12256. Epub 2014 Jan 20.
6
Predicting in-hospital death among patients injured in traffic crashes in Saudi Arabia.
Injury. 2014 Nov;45(11):1693-9. doi: 10.1016/j.injury.2014.05.029. Epub 2014 Jun 2.
7
Trauma models to identify major trauma and mortality in the prehospital setting.
Br J Surg. 2020 Mar;107(4):373-380. doi: 10.1002/bjs.11304. Epub 2019 Sep 10.
8
An artificial neural network as a model for prediction of survival in trauma patients: validation for a regional trauma area.
J Trauma. 2000 Aug;49(2):212-20; discussion 220-3. doi: 10.1097/00005373-200008000-00006.
10

引用本文的文献

3
Timing of mortality in pediatric trauma patients: A National Trauma Data Bank analysis.
J Pediatr Surg. 2018 Feb;53(2):344-351. doi: 10.1016/j.jpedsurg.2017.10.006. Epub 2017 Oct 8.
4
Pediatric trauma BIG score: Predicting mortality in polytraumatized pediatric patients.
Indian J Crit Care Med. 2016 Nov;20(11):640-646. doi: 10.4103/0972-5229.194011.
5
Systematic review and need assessment of pediatric trauma outcome benchmarking tools for low-resource settings.
Pediatr Surg Int. 2017 Mar;33(3):299-309. doi: 10.1007/s00383-016-4024-9. Epub 2016 Nov 21.

本文引用的文献

1
Predictive value of initial Glasgow coma scale score in pediatric trauma patients.
Pediatr Emerg Care. 2013 Jan;29(1):43-8. doi: 10.1097/PEC.0b013e31827b52bf.
2
GBD 2010: understanding disease, injury, and risk.
Lancet. 2012 Dec 15;380(9859):2053-4. doi: 10.1016/S0140-6736(12)62133-3.
3
Prehospital management of severe traumatic brain injury: concepts and ongoing controversies.
Curr Opin Anaesthesiol. 2012 Oct;25(5):556-62. doi: 10.1097/ACO.0b013e328357225c.
5
Universally poor outcomes of pediatric traumatic arrest: a prospective case series and review of the literature.
Pediatr Emerg Care. 2011 Jul;27(7):616-21. doi: 10.1097/PEC.0b013e31822255c9.
7
Factors associated with clinically significant head injury in children involved in motor vehicle crashes.
Traffic Inj Prev. 2010 Dec;11(6):600-5. doi: 10.1080/15389588.2010.513072.
10
Injury prevention and the attainment of child and adolescent health.
Bull World Health Organ. 2009 May;87(5):390-4. doi: 10.2471/blt.08.059808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验