Suppr超能文献

对人类癌症中出现的PRMT5和RUVBL1突变进行的计算机蛋白质结构分析。

In silico protein structural analysis of PRMT5 and RUVBL1 mutations arising in human cancers.

作者信息

Al-Marrawi Majd, Petreaca Ruben C, Bouley Renee A

机构信息

Neuroscience Undergraduate Program, The Ohio State University, USA.

Department of Molecular Genetics, The Ohio State University, Marion, USA; Cancer Biology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, USA.

出版信息

Cancer Genet. 2025 Apr;292-293:49-56. doi: 10.1016/j.cancergen.2025.01.002. Epub 2025 Jan 17.

Abstract

DNA double strand breaks (DSBs) can be generated spontaneously during DNA replication and are repaired primarily by Homologous Recombination (HR). However, efficient repair requires chromatin remodeling to allow the recombination machinery access to the break. TIP60 is a complex conserved from yeast to humans that is required for histone acetylation and modulation of HR activity at DSBs. Two enzymatic activities within the TIP60 complex, KAT5 (a histone acetyltransferase) and RUVBL1 (an AAA+ ATPase) are required for efficient HR repair. Post-translational modification of RUVBL1 by the PRMT5 methyltransferase activates the complex acetyltransferase activity and facilitates error free HR repair. In S. pombe a direct interaction between PRMT5 and the acetyltransferase subunit of the TIP60 complex (KAT5) was also identified. The TIP60 complex has been partially solved experimentally in both humans and S. cerevisiae, but not S. pombe. Here, we used in silico protein structure analysis to investigate structural conservation between S. pombe and human PRMT5 and RUVBL1. We found that there is more similarity in structure conservation between S. pombe and human proteins than between S. cerevisiae and human. Next, we queried the COSMIC database to analyze how mutations occurring in human cancers affect the structure and function of these proteins. Artificial intelligence algorithms that predict how likely mutations are to promote cellular transformation and immortalization show that RUVBL1 mutations should have a more drastic effect than PRMT5. Indeed, in silico protein structural analysis shows that PRMT5 mutations are less likely to destabilize enzyme function. Conversely, most RUVBL1 mutations occur in a region required for interaction with its partner (RUVBL2). These data suggests that cancer mutations could destabilize the TIP60 complex. Sequence conservation analysis between S. pombe and humans shows that the residues identified in cancer cells are highly conserved, suggesting that this may be an essential process in eukaryotic DSB repair. These results shed light on mechanisms of DSB repair and also highlight how S. pombe remains a great model system for analyzing DSB repair processes that are tractable in human cells.

摘要

DNA双链断裂(DSBs)可在DNA复制过程中自发产生,主要通过同源重组(HR)进行修复。然而,高效修复需要染色质重塑,以使重组机制能够接触到断裂处。TIP60是一种从酵母到人类都保守的复合物,它是组蛋白乙酰化以及DSBs处HR活性调节所必需的。TIP60复合物中的两种酶活性,即KAT5(一种组蛋白乙酰转移酶)和RUVBL1(一种AAA + ATP酶)是高效HR修复所必需的。PRMT5甲基转移酶对RUVBL1的翻译后修饰激活了复合物的乙酰转移酶活性,并促进了无错误的HR修复。在粟酒裂殖酵母中,还鉴定出PRMT5与TIP60复合物的乙酰转移酶亚基(KAT5)之间存在直接相互作用。TIP60复合物在人类和酿酒酵母中已通过实验部分解析,但在粟酒裂殖酵母中尚未解析。在这里,我们使用计算机蛋白质结构分析来研究粟酒裂殖酵母与人类PRMT5和RUVBL1之间的结构保守性。我们发现,粟酒裂殖酵母与人类蛋白质之间的结构保守性比酿酒酵母与人类之间的结构保守性更高。接下来,我们查询了COSMIC数据库,以分析人类癌症中发生的突变如何影响这些蛋白质的结构和功能。预测突变促进细胞转化和永生化可能性的人工智能算法表明,RUVBL1突变的影响应该比PRMT5更严重。实际上,计算机蛋白质结构分析表明,PRMT5突变使酶功能不稳定的可能性较小。相反,大多数RUVBL1突变发生在与其伴侣(RUVBL2)相互作用所需的区域。这些数据表明,癌症突变可能会使TIP60复合物不稳定。粟酒裂殖酵母与人类之间的序列保守性分析表明,癌细胞中鉴定出的残基高度保守,这表明这可能是真核生物DSB修复中的一个重要过程。这些结果揭示了DSB修复的机制,也突出了粟酒裂殖酵母如何仍然是分析人类细胞中易于处理的DSB修复过程的优秀模型系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验