Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.
Front Microbiol. 2014 Feb 18;5:59. doi: 10.3389/fmicb.2014.00059. eCollection 2014.
Most rod-shape model organisms such as Escherichia coli or Bacillus subtilis utilize two inhibitory systems for correct positioning of the cell division apparatus. While the nucleoid occlusion system acts in vicinity of the nucleoid, the Min system was thought to protect the cell poles from futile division leading to DNA-free miniature cells. The Min system is composed of an inhibitory protein, MinC, which acts at the level of the FtsZ ring formation. MinC is recruited to the membrane by MinD, a member of the MinD/ParA family of Walker-ATPases. Topological positioning of the MinCD complex depends on MinE in E. coli and MinJ/DivIVA in B. subtilis. While MinE drives an oscillation of MinCD in the E. coli cell with a time-dependent minimal concentration at midcell, the B. subtilis system was thought to be stably tethered to the cell poles by MinJ/DivIVA. Recent developments revealed that the Min system in B. subtilis mainly acts at the site of division, where it seems to prevent reinitiation of the division machinery. Thus, MinCD describe a dynamic behavior in B. subtilis. This is somewhat inconsistent with a stable localization of DivIVA at the cell poles. High resolution imaging of ongoing divisions show that DivIVA also enriches at the site of division. Here we analyze whether polar localized DivIVA is partially mobile and can contribute to septal DivIVA and vice versa. For this purpose we use fusions with green to red photoconvertible fluorophores, Dendra2 and photoactivatable PA-GFP. These techniques have proven very powerful to discriminate protein relocalization in vivo. Our results show that B. subtilis DivIVA is indeed dynamic and moves from the poles to the new septum.
大多数杆状模式生物,如大肠杆菌或枯草芽孢杆菌,利用两种抑制系统来正确定位细胞分裂装置。核区遮挡系统在核区附近起作用,而 Min 系统被认为可以防止细胞极无效分裂,从而导致无 DNA 的微型细胞。Min 系统由一种抑制蛋白 MinC 组成,它作用于 FtsZ 环形成的水平。MinC 通过 MinD(MinD/ParA 家族的 Walker-ATPase 成员)被招募到膜上。MinCD 复合物的拓扑定位依赖于大肠杆菌中的 MinE 和枯草芽孢杆菌中的 MinJ/DivIVA。虽然 MinE 驱动大肠杆菌细胞中 MinCD 的振荡,在细胞中部具有时间依赖性的最小浓度,但枯草芽孢杆菌系统被认为通过 MinJ/DivIVA 稳定地固定在细胞极上。最近的研究进展表明,枯草芽孢杆菌中的 Min 系统主要在分裂部位起作用,似乎可以防止分裂机制的重新启动。因此,MinCD 在枯草芽孢杆菌中描述了一种动态行为。这与 DivIVA 在细胞极上的稳定定位有些不一致。正在进行的分裂的高分辨率成像显示,DivIVA 也在分裂部位富集。在这里,我们分析极性定位的 DivIVA 是否部分是可移动的,并可以促进隔膜 DivIVA 的形成,反之亦然。为此,我们使用与绿色到红色光可转换荧光蛋白 Dendra2 和光激活型 PA-GFP 的融合。这些技术已被证明非常强大,可以在体内区分蛋白质的重定位。我们的结果表明,枯草芽孢杆菌 DivIVA 确实是动态的,并从极转移到新的隔膜。