Suppr超能文献

基于 DNA 折纸术的金纳米粒子二聚体组装用于表面增强拉曼散射。

DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.

机构信息

Cavendish Laboratory, JJ Thompson Avenue, Cambridge CB3 0HE, UK.

Center for NanoScience and Department of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.

出版信息

Nat Commun. 2014 Mar 13;5:3448. doi: 10.1038/ncomms4448.

Abstract

Plasmonic sensors are extremely promising candidates for label-free single-molecule analysis but require exquisite control over the physical arrangement of metallic nanostructures. Here we employ self-assembly based on the DNA origami technique for accurate positioning of individual gold nanoparticles. Our innovative design leads to strong plasmonic coupling between two 40 nm gold nanoparticles reproducibly held with gaps of 3.3 ± 1 nm. This is confirmed through far field scattering measurements on individual dimers which reveal a significant red shift in the plasmonic resonance peaks, consistent with the high dielectric environment due to the surrounding DNA. We use surface-enhanced Raman scattering (SERS) to demonstrate local field enhancements of several orders of magnitude through detection of a small number of dye molecules as well as short single-stranded DNA oligonucleotides. This demonstrates that DNA origami is a powerful tool for the high-yield creation of SERS-active nanoparticle assemblies with reliable sub-5 nm gap sizes.

摘要

等离子体激元传感器是用于无标记单分子分析的极有前途的候选者,但需要对金属纳米结构的物理排列进行精密控制。在这里,我们采用基于 DNA 折纸技术的自组装方法来精确定位单个金纳米粒子。我们的创新设计导致两个 40nm 金纳米粒子之间产生强烈的等离子体激元耦合,它们之间的间隙可重复保持在 3.3±1nm。通过对单个二聚体进行远场散射测量证实了这一点,二聚体的等离子体共振峰发生了显著红移,这与周围 DNA 导致的高介电环境一致。我们使用表面增强拉曼散射 (SERS) 通过检测少量染料分子和短的单链 DNA 寡核苷酸来证明局域场增强了几个数量级。这表明 DNA 折纸术是一种强大的工具,可用于高产率地创建具有可靠亚 5nm 间隙尺寸的 SERS 活性纳米粒子组装体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验