Cavendish Laboratory, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
Center for NanoScience and Department of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.
Nat Commun. 2014 Mar 13;5:3448. doi: 10.1038/ncomms4448.
Plasmonic sensors are extremely promising candidates for label-free single-molecule analysis but require exquisite control over the physical arrangement of metallic nanostructures. Here we employ self-assembly based on the DNA origami technique for accurate positioning of individual gold nanoparticles. Our innovative design leads to strong plasmonic coupling between two 40 nm gold nanoparticles reproducibly held with gaps of 3.3 ± 1 nm. This is confirmed through far field scattering measurements on individual dimers which reveal a significant red shift in the plasmonic resonance peaks, consistent with the high dielectric environment due to the surrounding DNA. We use surface-enhanced Raman scattering (SERS) to demonstrate local field enhancements of several orders of magnitude through detection of a small number of dye molecules as well as short single-stranded DNA oligonucleotides. This demonstrates that DNA origami is a powerful tool for the high-yield creation of SERS-active nanoparticle assemblies with reliable sub-5 nm gap sizes.
等离子体激元传感器是用于无标记单分子分析的极有前途的候选者,但需要对金属纳米结构的物理排列进行精密控制。在这里,我们采用基于 DNA 折纸技术的自组装方法来精确定位单个金纳米粒子。我们的创新设计导致两个 40nm 金纳米粒子之间产生强烈的等离子体激元耦合,它们之间的间隙可重复保持在 3.3±1nm。通过对单个二聚体进行远场散射测量证实了这一点,二聚体的等离子体共振峰发生了显著红移,这与周围 DNA 导致的高介电环境一致。我们使用表面增强拉曼散射 (SERS) 通过检测少量染料分子和短的单链 DNA 寡核苷酸来证明局域场增强了几个数量级。这表明 DNA 折纸术是一种强大的工具,可用于高产率地创建具有可靠亚 5nm 间隙尺寸的 SERS 活性纳米粒子组装体。