Moraes Christopher, Kim Byoung Choul, Zhu Xiaoyue, Mills Kristen L, Dixon Angela R, Thouless M D, Takayama Shuichi
Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA.
Lab Chip. 2014 Jul 7;14(13):2191-201. doi: 10.1039/c4lc00122b. Epub 2014 Mar 14.
Culturing cells in three-dimensional (3D) environments has been shown to significantly influence cell function, and may provide a more physiologically relevant environment within which to study the behavior of specific cell types. 3D tissues typically present a topologically complex fibrous adhesive environment, which is technically challenging to replicate in a controlled manner. Micropatterning technologies have provided significant insights into cell-biomaterial interactions, and can be used to create fiber-like adhesive structures, but are typically limited to flat culture systems; the methods are difficult to apply to topologically-complex surfaces. In this work, we utilize crack formation in multilayered microfabricated materials under applied strain to rapidly generate well-controlled and topologically complex 'fiber-like' adhesive protein patterns, capable of supporting cell culture and controlling cell shape on three-dimensional patterns. We first demonstrate that the features of the generated adhesive environments such as width, spacing and topology can be controlled, and that these factors influence cell morphology. The patterning technique is then applied to examine the influence of fiber structure on the nuclear morphology and actin cytoskeletal structure of cells cultured in a nanofibrous biomaterial matrix.
在三维(3D)环境中培养细胞已被证明会显著影响细胞功能,并且可能提供一个更具生理相关性的环境,以便在其中研究特定细胞类型的行为。3D组织通常呈现出拓扑复杂的纤维状黏附环境,以可控方式复制这种环境在技术上具有挑战性。微图案化技术为细胞与生物材料的相互作用提供了重要见解,可用于创建纤维状黏附结构,但通常仅限于平面培养系统;这些方法难以应用于拓扑复杂的表面。在这项工作中,我们利用多层微纳加工材料在施加应变时形成裂纹,快速生成可控且拓扑复杂的“纤维状”黏附蛋白图案,该图案能够支持细胞培养并在三维图案上控制细胞形状。我们首先证明所生成的黏附环境的特征,如宽度、间距和拓扑结构可以被控制,并且这些因素会影响细胞形态。然后将该图案化技术应用于研究纤维结构对在纳米纤维生物材料基质中培养的细胞的核形态和肌动蛋白细胞骨架结构的影响。