Suppr超能文献

理解离子和肽与膜相互作用的连续介质方法。

Continuum approaches to understanding ion and peptide interactions with the membrane.

作者信息

Latorraca Naomi R, Callenberg Keith M, Boyle Jon P, Grabe Michael

机构信息

Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA.

出版信息

J Membr Biol. 2014 May;247(5):395-408. doi: 10.1007/s00232-014-9646-z. Epub 2014 Mar 21.

Abstract

Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts.

摘要

实验和计算研究表明,细胞膜会发生变形以稳定包含带电荷跨膜(TM)蛋白的结构。最近的分析表明,膜弯曲有助于将带电荷和极性的残基暴露于水性环境和极性头部基团。我们之前利用弹性理论确定了能使带电荷的TM肽插入膜的过程最小化的膜变形情况。在此,我们拓展了我们的工作,表明它还提供了一种新颖的、计算效率高的方法来探索离子和小肽穿透膜的能量学。首先,我们表明连续介质方法能够以计算成本的一小部分准确再现由裸离子渗透的分子模拟产生的能量分布和膜形状。接下来,我们证明离子插入能量对膜厚度的依赖性主要源于膜的弹性特性。此外,连续介质模型很容易将自由能分解为不易从分子动力学确定的组分。最后,我们表明对于离子和肽而言,膜变形的能量学都强烈依赖于膜片大小。基于对来自人类病原体弓形虫的一种已知两亲性膜结合肽的模拟,这种依赖性对于肽来说尤为强烈。总体而言,我们阐述了在不同生物学背景下使用各种计算方法所产生的缺点和优点。

相似文献

1
Continuum approaches to understanding ion and peptide interactions with the membrane.
J Membr Biol. 2014 May;247(5):395-408. doi: 10.1007/s00232-014-9646-z. Epub 2014 Mar 21.
2
The importance of membrane defects-lessons from simulations.
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
3
A continuum method for determining membrane protein insertion energies and the problem of charged residues.
J Gen Physiol. 2008 Jun;131(6):563-73. doi: 10.1085/jgp.200809959. Epub 2008 May 12.
4
Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
Biophys J. 2003 Dec;85(6):3431-44. doi: 10.1016/S0006-3495(03)74765-1.
5
New Continuum Approaches for Determining Protein-Induced Membrane Deformations.
Biophys J. 2017 May 23;112(10):2159-2172. doi: 10.1016/j.bpj.2017.03.040.
6
Exploring peptide-membrane interactions with coarse-grained MD simulations.
Biophys J. 2011 Apr 20;100(8):1940-8. doi: 10.1016/j.bpj.2011.02.041.
7
Peptide partitioning properties from direct insertion studies.
Biophys J. 2010 Jun 16;98(12):L60-2. doi: 10.1016/j.bpj.2010.03.043.
8
Membrane bending is critical for the stability of voltage sensor segments in the membrane.
J Gen Physiol. 2012 Jul;140(1):55-68. doi: 10.1085/jgp.201110766.
10
Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
Biophys J. 2007 Sep 15;93(6):1858-71. doi: 10.1529/biophysj.106.103812. Epub 2007 May 11.

引用本文的文献

2
Ion Permeation through a Phospholipid Membrane: Transition State, Path Splitting, and Calculation of Permeability.
J Chem Theory Comput. 2019 Jan 8;15(1):720-730. doi: 10.1021/acs.jctc.8b00882. Epub 2018 Dec 7.
3
Modeling Membrane Curvature Generation due to Membrane⁻Protein Interactions.
Biomolecules. 2018 Oct 23;8(4):120. doi: 10.3390/biom8040120.
4
New Continuum Approaches for Determining Protein-Induced Membrane Deformations.
Biophys J. 2017 May 23;112(10):2159-2172. doi: 10.1016/j.bpj.2017.03.040.
5
Atomistic insight into lipid translocation by a TMEM16 scramblase.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14049-14054. doi: 10.1073/pnas.1607574113. Epub 2016 Nov 21.
6
Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1619-34. doi: 10.1016/j.bbamem.2016.02.003. Epub 2016 Feb 4.
7
Molecular Basis of the Membrane Interaction of the β2e Subunit of Voltage-Gated Ca(2+) Channels.
Biophys J. 2015 Sep 1;109(5):922-35. doi: 10.1016/j.bpj.2015.07.040.
8
Interactions of amino acid side-chain analogs within membrane environments.
J Phys Chem B. 2015 Feb 19;119(7):2877-85. doi: 10.1021/jp511712u. Epub 2015 Feb 6.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Water Defect and Pore Formation in Atomistic and Coarse-Grained Lipid Membranes: Pushing the Limits of Coarse Graining.
J Chem Theory Comput. 2011 Sep 13;7(9):2981-8. doi: 10.1021/ct200291v. Epub 2011 Aug 17.
4
Perspective on the Martini model.
Chem Soc Rev. 2013 Aug 21;42(16):6801-22. doi: 10.1039/c3cs60093a.
5
A comparison of coarse-grained and continuum models for membrane bending in lipid bilayer fusion pores.
Biophys J. 2013 Feb 19;104(4):841-52. doi: 10.1016/j.bpj.2012.12.043.
6
Specific binding of chloride ions to lipid vesicles and implications at molecular scale.
Biophys J. 2013 Feb 19;104(4):818-24. doi: 10.1016/j.bpj.2012.12.056.
7
A tale of two ions and their membrane interactions: clearly the same or clearly different?
Biophys J. 2013 Feb 19;104(4):746-7. doi: 10.1016/j.bpj.2013.01.010.
8
Membrane bending is critical for the stability of voltage sensor segments in the membrane.
J Gen Physiol. 2012 Jul;140(1):55-68. doi: 10.1085/jgp.201110766.
9
Testing physical models of passive membrane permeation.
J Chem Inf Model. 2012 Jun 25;52(6):1621-36. doi: 10.1021/ci200583t. Epub 2012 May 24.
10
Influence of hydrophobic mismatch on structures and dynamics of gramicidin a and lipid bilayers.
Biophys J. 2012 Apr 4;102(7):1551-60. doi: 10.1016/j.bpj.2012.03.014. Epub 2012 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验