Latorraca Naomi R, Callenberg Keith M, Boyle Jon P, Grabe Michael
Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA.
J Membr Biol. 2014 May;247(5):395-408. doi: 10.1007/s00232-014-9646-z. Epub 2014 Mar 21.
Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts.
实验和计算研究表明,细胞膜会发生变形以稳定包含带电荷跨膜(TM)蛋白的结构。最近的分析表明,膜弯曲有助于将带电荷和极性的残基暴露于水性环境和极性头部基团。我们之前利用弹性理论确定了能使带电荷的TM肽插入膜的过程最小化的膜变形情况。在此,我们拓展了我们的工作,表明它还提供了一种新颖的、计算效率高的方法来探索离子和小肽穿透膜的能量学。首先,我们表明连续介质方法能够以计算成本的一小部分准确再现由裸离子渗透的分子模拟产生的能量分布和膜形状。接下来,我们证明离子插入能量对膜厚度的依赖性主要源于膜的弹性特性。此外,连续介质模型很容易将自由能分解为不易从分子动力学确定的组分。最后,我们表明对于离子和肽而言,膜变形的能量学都强烈依赖于膜片大小。基于对来自人类病原体弓形虫的一种已知两亲性膜结合肽的模拟,这种依赖性对于肽来说尤为强烈。总体而言,我们阐述了在不同生物学背景下使用各种计算方法所产生的缺点和优点。